Determining Water Isotope Compositions for the IAEA WICO and North West Villages, South Africa
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. IAEA WICO Samples
2.3. Sampling Technique and Analysis
2.4. Quality Control and Quality Assurance
3. Results and Discussion
3.1. Results for IAEA WICO Samples
3.2. Results for North West Villages Samples
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cozma, A.I.; Baciu, C.; Moldovan, M.; Pop, I.-C. Using Natural Tracers to Track the Groundwater Flow in a Mining Area. Procedia Environ. Sci. 2016, 32, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sanyal, P.; Agrawal, S. Spatial distribution of δ18O values of water in the Ganga river basin: Insight into the hydrological processes. J. Hydrol. 2019, 571, 225–234. [Google Scholar] [CrossRef]
- Kendall, C.; McDonnell, J.J. Preface. In Isotope Tracers in Catchment Hydrology; Kendall, C., McDonnell, J.J., Eds.; Elsevier: Amsterdam, The Netherelands, 1998; pp. vii–ix. [Google Scholar]
- McGuire, K.; McDonnell, J. Stable Isotope Tracers in Watershed Hydrology. In Stable Isotopes in Ecology and Environmental Science; Wiley-Blackwell: Johannesburg, South Africa, 2007; pp. 334–374. [Google Scholar]
- Chiogna, G.; Skrobanek, P.; Narany, T.S.; Ludwig, R.; Stumpp, C. Effects of the 2017 drought on isotopic and geochemical gradients in the Adige catchment, Italy. Sci. Total Environ. 2018, 645, 924–936. [Google Scholar] [CrossRef] [PubMed]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Froehlich, K.; Gibson, J.; Aggarwal, P. Deuterium Excess in Precipitation and Its Climatological Significance; International Atomic Energy Agency (IAEA): Vienna, Austria, 2002. [Google Scholar]
- Bershaw, J.; Hansen, D.D.; Schauer, A.J. Deuterium excess and 17O-excess variability in meteoric water across the Pacific Northwest, USA. Tellus B Chem. Phys. Meteorol. 2020, 72, 1–17. [Google Scholar] [CrossRef]
- Pfahl, S.; Sodemann, H. What controls deuterium excess in global precipitation? Clim. Past 2014, 10, 771–781. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, R.; Karami, G.; Jafari, H.; Eggenkamp, H.G.M.; Shamsi, A. Isotope hydrology and geothermometry of the thermal springs, Damavand volcanic region, Iran. J. Volcanol. Geotherm. Res. 2019, 389, 106745. [Google Scholar] [CrossRef]
- Rao, S.M.; Kulkarni, K.M. Isotope hydrology studies on water resources in western Rajasthan. Curr. Sci. (Bangalore) 1997, 72, 55–61. [Google Scholar]
- West, A.G.; February, E.C.; Bowen, G.J. Spatial analysis of hydrogen and oxygen stable isotopes (“isoscapes”) in ground water and tap water across South Africa. J. Geochem. Explor. 2014, 145, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Aggarwal, P.; Duren, M.v.; Poltenstein, L.; Araguas, L.; Kurttas, T.; Wassenaar, L.I. Final Report on Fourth Interlaboratory Comparison Exercise for δ2H and δ18O Analysis of Water Samples (WICO2011); IAEA: Vienna, Austria, 2012; p. 67. [Google Scholar]
- Terzer-Wassmuth, S.; Ortega, L.; Araguás-Araguás, L.; Wassenaar, L.I. The first IAEA inter-laboratory comparison exercise in Latin America and the Caribbean for stable isotope analyses of water samples. Isot. Environ. Health Stud. 2020, 56, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Carney, J.N.; Aldiss, D.T.; Lock, N.P. The Geology of Botswana; Geological Survey Dept.: Lobatse, Botswana, 1994. [Google Scholar]
- Duraisamy, S.; Govindhaswamy, V.; Duraisamy, K.; Krishinaraj, S.; Balasubramanian, A.; Thirumalaisamy, S. Hydrogeochemical characterization and evaluation of groundwater quality in Kangayam taluk, Tirupur district, Tamil Nadu, India, using GIS techniques. Environ. Geochem. Health 2019, 41, 851–873. [Google Scholar] [CrossRef] [PubMed]
- Dedzo, M.G.; Tsozué, D.; Mimba, M.E.; Teddy, F.; Nembungwe, R.M.; Linida, S. Importance of Rocks and Their Weathering Products on Groundwater Quality in Central-East Cameroon. Hydrology 2017, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Steinnes, E.; Salbu, B. Trace Elements in Natural Waters; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Dallas, H.; Fowler, J. Delineation of River Types for Rivers of Mpumalanga, South Africa: The Establishment of a Spatial Framework for the Selection of Reference Sites; Southern Waters Ecological Research and Consulting: Cape Town, South Africa, 2000. [Google Scholar]
- Jung, H.; Koh, D.-C.; Kim, Y.S.; Jeen, S.-W.; Lee, J. Stable isotopes of water and nitrate for the identification of groundwater flowpaths: A review. Water 2020, 12, 138. [Google Scholar] [CrossRef] [Green Version]
- IAEA. WICO 2020 δ18O/δ2H Intercomparison Test Laboratory Report; IAEA: Vienna, Austria, 2020. [Google Scholar]
- Leketa, K.; Abiye, T. Using Environmental Tracers to Characterize Groundwater Flow Mechanisms in the Fractured Crystalline and Karst Aquifers in Upper Crocodile River Basin, Johannesburg, South Africa. Hydrology 2021, 8, 50. [Google Scholar] [CrossRef]
- Tessema, A.; Nzotta, U.; Chirenje, E. Assessment of Groundwater Potential in Fractured Hard Rocks around Vryburg; North West Province, South Africa, WRC Project; Water Research Commission: Pretoria, South Africa, 2014. [Google Scholar]
Sample | Reference Value | Submitted Result | Evaluation | Comment | |||||
δ²H | Unc. | σp | δ²H | Unc. | D | z-test | ζ-test | ||
OH25 | 6.4 | 0.2 | 1.1 | 6.0 | 0.3 | −0.4 | −0.34 | −1.14 | - |
OH26 | 11.6 | 0.2 | 1.1 | 11.4 | 0.2 | −0.2 | −0.14 | −0.57 | - |
OH27 | 8.3 | 0.3 | 1.1 | 7.4 | 0.4 | −0.9 | −0.80 | −1.92 | - |
OH28 | 14.6 | 0.4 | 1.1 | 14.1 | 0.6 | −0.5 | −0.49 | −0.75 | - |
OH29 | 10.2 | 0.2 | 1.1 | 10.6 | 0.3 | 0.3 | 0.30 | 0.92 | - |
OH30 | 11.8 | 0.3 | 1.1 | 11.9 | 0.3 | 0.1 | 0.08 | 0.20 | - |
Colour Codes | Overall performance | ||||||||
Satisfactory | Avg |z| δ²H | 0.36 | - | ||||||
Questionable | Avg |ζ| δ²H | 0.92 | - | ||||||
Unsatisfactory | SD of D δ²H | 0.45 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathuthu, J.; Mokhine, N.D.; Mkiva, N.; Nde, S.C.; Dennis, I.; Hendriks, J.; Palamuleni, L.; Kupi, T.G.; Mathuthu, M. Determining Water Isotope Compositions for the IAEA WICO and North West Villages, South Africa. Water 2021, 13, 2801. https://doi.org/10.3390/w13202801
Mathuthu J, Mokhine ND, Mkiva N, Nde SC, Dennis I, Hendriks J, Palamuleni L, Kupi TG, Mathuthu M. Determining Water Isotope Compositions for the IAEA WICO and North West Villages, South Africa. Water. 2021; 13(20):2801. https://doi.org/10.3390/w13202801
Chicago/Turabian StyleMathuthu, Joseph, Naomi Dikeledi Mokhine, Namhla Mkiva, Samuel Che Nde, Ingrid Dennis, Johan Hendriks, Lobina Palamuleni, Tebogo Gilbert Kupi, and Manny Mathuthu. 2021. "Determining Water Isotope Compositions for the IAEA WICO and North West Villages, South Africa" Water 13, no. 20: 2801. https://doi.org/10.3390/w13202801
APA StyleMathuthu, J., Mokhine, N. D., Mkiva, N., Nde, S. C., Dennis, I., Hendriks, J., Palamuleni, L., Kupi, T. G., & Mathuthu, M. (2021). Determining Water Isotope Compositions for the IAEA WICO and North West Villages, South Africa. Water, 13(20), 2801. https://doi.org/10.3390/w13202801