Relationship between Morphological Characteristics and Quality of Aquatic Habitat in Mountain Streams of Slovakia
Abstract
:1. Introduction
2. Materials and Methods
- Selection of the reference stream reaches;
- Topographic and hydrometric measurements of the reference reaches;
- Ichthyological surveys in the reference reaches of the streams; and
- Correlation and regression analyses of the instream characteristics and their influence on the quality of aquatic habitats.
2.1. Selection of Reference Stream Reaches
- The negative impact of stream regulation on aquatic biota has been proven predominantly in mountain and piedmont streams.
- These streams are susceptible to morphological changes; therefore, the negative responses of their regulation are common in many areas, and it can be expected that the obtained results can be generalised.
- Mountain and piedmont streams are located in the upper parts of the river basin and are relatively short; therefore, the pollution load of the stream is usually low, and the water quality does not overshadow the influence of riverbed morphology on the quality of the aquatic habitat.
2.2. Topographic Survey and Hydrometric Measurement of the Reference Reaches
2.3. Ichthyological Survey in the Reference Reaches of the Streams
2.4. Correlation and Regression Analysis of Instream Characteristics and Their Influence on the Quality of Aquatic Habitat
3. Results
3.1. Habitat Quality
3.2. Correlation and Regression Analyses of Instream Characteristics and Their Influence on the Quality of Aquatic Habitat
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maddock, I.; Harby, A.; Kemp, P.; Wood, P.J. Ecohydraulics: An Integrated Approach; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Anim, D.O.; Fletcher, T.D.; Vietz, G.J.; Burns, M.J.; Pasternack, G.B. How alternative urban stream channel designs influence ecohydraulic conditions. J. Environ. Manag. 2019, 247, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Karki, S.; Stewardson, M.J.; Webb, J.A.; Fowler, K.; Kattel, G.R.; Gilvear, D.J. Does the topology of the river network influence the delivery of riverine ecosystem services? River. Res. Appl. 2020, 1–14. [Google Scholar] [CrossRef]
- Farnsworth, J.M.; Baasch, D.M.; Farrell, P.D.; Smith, C.B.; Werbylo, K.L. Investigating whooping crane habitat in relation to hydrology, channel morphology and a water-centric management strategy on the central Platte River, Nebraska. Heliyon 2018, 4, e00851. [Google Scholar] [CrossRef] [PubMed]
- Galie, A.-C.; Moldoveanu, M.; Antonalu, O. Hydromorphological Assessment of Atypical Lowland River—Romanian Litoral Basin Case Study. Carpathian J. Earth Environ. Sci. 2017, 12, 161–169. [Google Scholar]
- Carnie, R.; Tonina, D.; McKean, J.A.; Isaak, D. Habitat Connectivity as a Metric for Aquatic Microhabitat Quality: Application to Chinook Salmon Spawning Habitat. Ecohydrology 2016, 9, 982–994. [Google Scholar] [CrossRef]
- Gibson, S.A.; Pasternack, G.B. Selecting Between One-Dimensional and Two-Dimensional Hydrodynamic Models for Ecohydraulic Analysis. River Res. Appl. 2016, 32, 1365–1381. [Google Scholar] [CrossRef] [Green Version]
- Wegscheider, B.; Linnansaari, T.; Curry, R.A. Mesohabitat modelling in fish ecology: A global synthesis. Fish Fish. 2020, 21, 927–939. [Google Scholar] [CrossRef]
- Richer, E.E.; Gates, E.A.; Kondratieff, M.C.; Herdrich, A.T. Modelling changes in trout habitat following stream restoration. River Res. Appl. 2019, 35, 680–691. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, J.S.; Ptolemy, R. Modelling available habitat versus available energy flux: Do PHABSIM applications that neglect prey abundance underestimate optimal flows for juvenile salmonids? Can. J. Fish. Aquat. Sci. 2012, 69, 1920–1934. [Google Scholar] [CrossRef]
- Persinger, J.W.; Orth, D.J.; Averett, A.W. Using habitat guilds to develop habitat suitability criteria for a warmwater stream fish assemblage. River Res. Appl. 2011, 27, 956–966. [Google Scholar] [CrossRef]
- Gualtieri, C.; Abdi, R.; Ianniruberto, M.; Filizola, N.; Endreny, T.A. A 3D analysis of spatial habitat metrics about the confluence of Negro and Solimões rivers, Brazil. Ecohydrology 2020, 13, 2166. [Google Scholar] [CrossRef]
- Guénard, G.; Morin, J.; Matte, P.; Secretan, Y.; Valiquette, E.; Mingelbier, M. Deep learning habitat modeling for moving organisms in rapidly changing estuarine environments: A case of two fishes. Estuar. Coast. Shelf. S. 2020, 238, 106713. [Google Scholar] [CrossRef]
- Cassan, L.; Roux, H.; Dartus, D. Velocity distribution in open channel flow with spatially distributed roughness. Environ. Fluid. Mech. 2020, 20, 321–338. [Google Scholar] [CrossRef]
- Kupferschmidt, C.; Noddin, F.; Zhu, D.Z.; Tonn, W.M. Using Video to Evaluate Depth and Velocity Selection by Arctic Grayling (Thymallus arcticus) in Pools of an Engineered Tundra Stream. ARCTIC 2019, 72, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Elbrecht, V.; Beermann, A.J.; Goessler, G.; Neumann, J.; Tollrian, R.; Wagner, R.; Wlecklik, A.; Piggott, J.J.; Matthaei, C.D.; Leese, F. Multiple-stressor effects on stream invertebrates: A mesocosm experiment manipulating nutrients, fine sediment and flow velocity. Freshw. Biol. 2016, 61, 362–375. [Google Scholar] [CrossRef]
- Reitsema, R.E.; Preiner, S.; Meire, P.; Hein, T.; Dai, Y.; Schoelynck, J. Environmental control of macrophyte traits and interactions with metabolism and hydromorphology in a groundwater-fed river. River Res. Appl. 2020, 1–13. [Google Scholar] [CrossRef]
- Edwards, P.M.; Pan, Y.; Mork, L.; Thorne, C. Using diatoms to assess river restoration: A pilot study in Whychus Creek, Oregon, USA. River Res. Appl. 2020, 1–7. [Google Scholar] [CrossRef]
- Bardonnet, A.; Poncin, P.; Roussel, J.-M. Brown trout fry move inshore at night: A choice of water depth or velocity? Ecol. Freshw. Fish. 2006, 15, 309–314. [Google Scholar] [CrossRef]
- Parker, T.M.; Barnes, M.E. Effects of Different Water Velocities on the Hatchery Rearing Performance and Recovery from Transportation of Rainbow Trout Fed Two Different Rations. Trans. Am. Fish. Soc. 2015, 144, 882–890. [Google Scholar] [CrossRef]
- Marsh, J.E.; Lauridsen, R.B.; Gregory, S.D. Above parr: Lowland river habitat characteristics associated with higher juvenile Atlantic salmon (Salmo salar) and brown trout (S. trutta) densities. Ecol. Freshw. Fish. 2020, 29, 542–556. [Google Scholar] [CrossRef]
- European Parliament. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Parliament: Brussels, Belgium, 2000.
- Payne, T.R.; Jowett, I.G. SEFA-Computer software system for environmental flow analysis based on the instream flow incremental methodology. In Proceedings of the 2013 Georgia Water Resources Conference, Athens, GA, USA, 10–11 April 2013. [Google Scholar]
- Štefunková, Z.; Belčáková, I.; Majorošová, M.; Škrinár, A.; Vaseková, B.; Neruda, M.; Macura, V. The impact of the morphology of mountain watercourses on the habitat preferences indicated by ichtyofauna using the IFIM methodology. Appl. Ecol. Environ. Res. 2018, 16, 5893–5907. [Google Scholar] [CrossRef]
- Macura, V.; Škrinár, A.; Kaluz, K.; Jalčovíková, M.; Škrovinová, M. Influence of the morphological and hydraulic characteristics of mountain streams on fish habitat suitability curves. River Res. Appl. 2012, 28, 1161–1178. [Google Scholar] [CrossRef]
- Macura, V.; Štefunková, Z.; Škrinár, A. Determination of the effect of water depth and flow velocity on the quality of an in-stream habitat in terms of climate change. Adv. Meteorol. 2016. [Google Scholar] [CrossRef] [Green Version]
- US Army Corps of Engineers. HEC-RAS User’s Manual; US Army Corps of Engineers: Davis, CA, USA, 2016.
- BSI. Hydrometry—Measurement of Liquid Flow in Open Channels Using Current-Meters or Floats (ISO 748: 2007); BSI: London, UK, 2007. [Google Scholar]
- Herschy, R.W. Streamflow Measurement, 3rd ed.; Taylor & Francis: Abingdon, UK, 2008; ISBN 0415413427. [Google Scholar]
- International Organization for Standardization. Liquid Flow Measurement in Open Channels—Calibration of Rotating-Element Current-Meters in Straight Open Tanks (ISO 3455:1976); ISO: London, UK, 1976. [Google Scholar]
- Lamouroux, N.; Capra, H.; Pouilly, M.; Souchon, Y. Fish habitat preferences in large streams of southern France. Freshw. Biol. 1999, 42, 673–687. [Google Scholar] [CrossRef]
- Schmutz, S.; Jungwirth, M. Fish as indicators of large river connectivity: The Danube and its tributaries. Arch. Hydrobiol. 1999, 11, 329–348. [Google Scholar] [CrossRef]
- Patton, T.M.; Hubert, W.A.; Rahel, F.J.; Gerow, K.G. Effort needed to estimate species richness in small streams on the Great Plains in Wyoming. N. Am. J. Fish. Manag. 2000, 20, 394–398. [Google Scholar] [CrossRef]
- Magalhaes, M.F.; Batalha, D.C.; Collares-Pereira, M.J. Gradients in stream fish assemblages across a Mediterranean landscape: Contributions of environmental factors and spatial structure. Freshw. Biol. 2002, 47, 1015–1031. [Google Scholar] [CrossRef]
- Fladung, E.; Scholten, M.; Thiel, R. Modelling the habitat preferences of preadult and adult fishes on the shoreline of the large, lowland Elbe River. J. Appl. Ichthyol. 2003, 19, 303–314. [Google Scholar] [CrossRef]
- Lasne, E.; Bergerot, B.; Lek, S.; Laffaille, P. Fish zonation and indicator species for the evaluation of the ecological status of rivers: Example of the Loire basin (France). River Res. Appl. 2007, 23, 877–890. [Google Scholar] [CrossRef]
- Gorman, O.T.; Karr, J.R. Habitat Structure and Stream Fish Communities. Ecology 1978, 59, 507–515. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Earlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 0-8058-0283-5. [Google Scholar]
- Harby, A.; Olivier, J.-M.; Merigoux, S.; Malet, E. A mesohabitat method used to assess minimum flow changes and impacts on the invertebrate and fish fauna in the Rhône River, France. River Res. Appl. 2007, 23, 525–543. [Google Scholar] [CrossRef]
- Bovee, K.D.; Lamb, B.L.; Bartholow, J.M.; Stalnaker, C.B.; Taylor, J.; Henriksen, J. Stream Habitat Analysis Using the Instream Flow Incremental Methodology. Information and Technology Report USGS/BRD/ITR-1998-0004; Geological Survey BRD: Fort Collins, CO, USA, 1998; 130p.
- Wilding, T.K.; Bledsoe, B.; Poff, N.L.; Sanderson, J. Predicting habitat response to flow using generalized habitat models for trout in Rocky Mountain streams. River Res. Appl. 2014, 30, 805–824. [Google Scholar] [CrossRef]
- Davey, A.J.H.; Booker, D.J.; Kelly, D.J. Diel variation in stream fish habitat suitability criteria: Implications for instream flow assessment. Aquat. Conserv. Mar. Freshw. Ecosyst. 2011, 21, 132–145. [Google Scholar] [CrossRef]
- Štefunková, Z.; Macura, V.; Škrinár, A.; Majorošová, M.; Doláková, G.; Halaj, P.; Petrová, T. Evaluation of the Methodology to Assess the Influence of Hydraulic Characteristics on Habitat Quality. Water 2020, 12, 1131. [Google Scholar] [CrossRef] [Green Version]
- Lindeman, R.H.; Merenda, P.F.; Gold, R.Z. Introduction to Bivariate and Multivariate Analysis; Foresman and Company: Glenview, IL, USA, 1980. [Google Scholar]
Stream Characteristics | Min | 1QR | Median | Mean | 3QR | Max |
---|---|---|---|---|---|---|
Q364d (m3·s−1) | 0.003 | 0.025 | 0.052 | 0.084 | 0.095 | 0.43 |
Ap (km2) | 3.53 | 16.27 | 39.39 | 64.18 | 76.26 | 467.16 |
dmax (m) | 0.1 | 0.17 | 0.27 | 0.302 | 0.41 | 0.79 |
dam (m) | 0.08 | 0.145 | 0.2 | 0.232 | 0.295 | 0.54 |
ip | 0.002 | 0.009 | 0.015 | 0.018 | 0.022 | 0.076 |
n100 | 0.8 | 2.526 | 3.226 | 3.404 | 4.211 | 7.576 |
LCov (m) | 5 | 11 | 14 | 15.4 | 18.1 | 32.5 |
WCov (m) | 0.35 | 1.05 | 1.4 | 1.826 | 2.12 | 5.84 |
AWSCov (m2·m−1) | 0.006 | 0.436 | 0.854 | 1.84 | 1.4 | 5.091 |
AWSRch (m2·m−1) | 0.002 | 0.191 | 0.382 | 0.506 | 0.572 | 2.7 |
Variable | r | p-Value | Confidence Interval |
---|---|---|---|
Q364d (m3·s−1) | 0.500 | 4.16 × 10−5 | 0.283–0.667 |
Ap (km2) | 0.452 | 2.56 × 10−4 | 0.226–0.632 |
dmax (m) | 0.623 | 8.44 × 10−8 | 0.440–0.756 |
dam (m) | 0.821 | 5.33 × 10−16 | 0.718–0.889 |
ip | −0.172 | 1.86 × 10−1 | −0.406–0.084 |
n100 | −0.243 | 5.87 × 10−2 | −0.467–0.009 |
LCov (m) | −0.023 | 8.62 × 10−1 | −0.273–0.230 |
WCov (m) | 0.868 | 1.29 × 10−19 | 0.789–0.919 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štefunková, Z.; Macura, V.; Škrinár, A.; Ivan, P.; Čistý, M.; Majorošová, M.; Tyukosová, V. Relationship between Morphological Characteristics and Quality of Aquatic Habitat in Mountain Streams of Slovakia. Water 2021, 13, 142. https://doi.org/10.3390/w13020142
Štefunková Z, Macura V, Škrinár A, Ivan P, Čistý M, Majorošová M, Tyukosová V. Relationship between Morphological Characteristics and Quality of Aquatic Habitat in Mountain Streams of Slovakia. Water. 2021; 13(2):142. https://doi.org/10.3390/w13020142
Chicago/Turabian StyleŠtefunková, Zuzana, Viliam Macura, Andrej Škrinár, Peter Ivan, Milan Čistý, Martina Majorošová, and Viktória Tyukosová. 2021. "Relationship between Morphological Characteristics and Quality of Aquatic Habitat in Mountain Streams of Slovakia" Water 13, no. 2: 142. https://doi.org/10.3390/w13020142
APA StyleŠtefunková, Z., Macura, V., Škrinár, A., Ivan, P., Čistý, M., Majorošová, M., & Tyukosová, V. (2021). Relationship between Morphological Characteristics and Quality of Aquatic Habitat in Mountain Streams of Slovakia. Water, 13(2), 142. https://doi.org/10.3390/w13020142