Erosion Resistance Performance of Surface-Reinforced Levees Using Novel Biopolymers Investigated via Real-Scale Overtopping Experiments
Abstract
:1. Introduction
2. Experimental Description
2.1. Levee Properties
2.2. Experimental Method
3. Results
3.1. Image Analysis of the Surface Loss Rate under Each Levee Condition
3.2. Comparison of the Cumulative Overflow Discharge and Surface Loss Rate
3.3. Analysis of the Surface Loss Rate Using Drones and 3D Point Cloud Modeling
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meunier, B.; Merwade, V. Prioritizing levee repairs: A case study for the city of Indianapolis, Indiana. Nat. Hazards 2014, 72, 997–1019. [Google Scholar] [CrossRef]
- Collenteur, R.A.; De Moel, H.; Jongman, B.; Di Baldassarre, G. The failed-levee effect: Do societies learn from flood disasters? Nat. Hazards 2015, 76, 373–388. [Google Scholar] [CrossRef]
- Ahn, M.; Ko, D.; Ji, U.; Kang, J. Experimental study on levee monitoring system for abnormality detection using fiber optic temperature sensing. Ecol. Resilient Infrastruct. 2019, 6, 120–127. [Google Scholar]
- Costa, J.E. Floods from Dam Failures; Open-File Rep. No. 85-560; USGS: Denver, CO, USA, 1985; p. 54. [Google Scholar]
- ASCE Task Committee on Dam/Levee Breaching. Earthen embankment breaching. J. Hydraul. Eng. 2011, 137, 1549–1564. [Google Scholar] [CrossRef]
- Tinney, E.R.; Hsu, H.Y. Mechanics of washout of an erodible fuse plug. Trans. Am. Soc. Civil. Eng. 1962, 127, 31–59. [Google Scholar] [CrossRef]
- Fujita, Y.; Tamura, T. Enlargement of breaches in flood levees on alluvial plains. Nat. Dis. Sci. 1987, 9, 37–60. [Google Scholar]
- Mohamed, M.A.A.; Morris, M.; Hanson, G.J.; Lakhal, K. Breach Formation: Laboratory and Numerical Modeling of Breach Formation. In Proceedings of the Dam Safety 2004, ASDSO Phoenix, Phoenix, AZ, USA, 26–30 September 2004. [Google Scholar]
- Hanson, G.J.; Cook, K.R.; Hunt, S.L. Physical modeling of overtopping erosion and breach formation of cohesive embankments. Trans. ASABE 2005, 48, 1783–1794. [Google Scholar] [CrossRef]
- van Damme, M. A process-based method for predicting lateral erosion rates. Nat. Hazards 2021, 107, 375–394. [Google Scholar] [CrossRef]
- Liu, W.C.; Wu, C.Y. Flash flood routing modeling for levee-breaks and overbank flows due to typhoon events in a complicated river system. Nat. Hazards 2011, 58, 1057–1076. [Google Scholar] [CrossRef]
- Huang, W.C.; Weng, M.C.; Chen, R.K. Levee failure mechanisms during the extreme rainfall event: A case study in Southern Taiwan. Nat. Hazards 2014, 70, 1287–1307. [Google Scholar] [CrossRef] [Green Version]
- Wahl, T.L.; Hanson, G.J.; Courivaud, J.R.; Morris, M.W.; Kahawita, R.; McClenathan, J.T.; Gee, D.M. Development of next-generation embankment dam breach models. In Proceedings of the 2008 U.S. Society on Dams Annual Meeting and Conference, Portland, OR, USA, April 28–May 2 2008; pp. 767–779. [Google Scholar]
- Zhang, J.; Li, Y.; Xuan, G.; Wang, X.; Li, J. Overtopping breaching of cohesive homogeneous earth dam with different cohesive strength. Sci. China Ser. E Technol. Sci. 2009, 52, 3024–3029. [Google Scholar] [CrossRef]
- Ko, D.; Kang, J. Biopolymer-reinforced levee for breach development retardation and enhanced erosion control. Water 2020, 12, 1070. [Google Scholar] [CrossRef] [Green Version]
- Kakinuma, T.; Shimizu, Y. Large-scale experiment and numerical modeling of a riverine levee breach. J. Hydraul. Eng. 2014, 140, 04014039. [Google Scholar] [CrossRef]
- Chinnarasri, C.; Jirakitlerd, S.; Wongwises, S. Embankment dam breach and its outflow characteristics. J. Civ. Eng. Environ. Syst. 2004, 21, 247–264. [Google Scholar] [CrossRef]
- Zhu, Y.; Visser, P.; Vrijling, J. Laboratory observations of embankment breaching. In Proceedings of the International Conference on Hydroscience and Engineering 2006, Philadelphia, PA, USA, 10–13 September 2006. [Google Scholar]
- Carrivick, J.L.; Smith, M.W. Fluvial and aquatic applications of structure from motion photogrammetry and unmanned aerial vehicle/drone technology. Wiley Interdiscip. Rev. Water 2019, 6, e1328. [Google Scholar] [CrossRef] [Green Version]
- Ko, D.; Kang, J.; Kang, W. Application of 3D point cloud modeling for performance analysis of reinforced levee with biopolymer. J. Korea Water Resour. Assoc. 2021, 54, 181–190. [Google Scholar]
- Kwon, Y.M.; Ham, S.M.; Kwon, T.H.; Cho, G.C.; Chang, I. Surface-erosion behaviour of biopolymer-treated soils assessed by EFA. Géotech. Lett. 2020, 10, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Chang, I.; Im, J.; Cho, G.C. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability 2016, 8, 251. [Google Scholar] [CrossRef] [Green Version]
Red Clay to Sand | Liquid Limit LL [%] | Plastic Limit PL [%] | Plasticity Index PI [%] | Uniformity Coefficient Cu | Curvature Coefficient Cg | Classification |
---|---|---|---|---|---|---|
100:0 | 33 | 18 | 14 | N/A | N/A | SC |
50:50 | 27 | 15 | 11 | N/A | N/A | SC |
30:70 | 21 | 13 | 8 | N/A | N/A | SC |
0:100 | N/A | N/A | N/A | 2.7 | 0.89 | SP |
Case | Case 1 | Case 2 | |||
---|---|---|---|---|---|
Time (min) | 6.5 | 11.8 | 5 | 40 | 50 |
Number of images | 24 | 19 | 40 | 41 | 45 |
Georeferencing mean RMS error [m] | 0.029 | 0.016 | 0.024 | 0.027 | 0.025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, W.; Ko, D.; Kang, J. Erosion Resistance Performance of Surface-Reinforced Levees Using Novel Biopolymers Investigated via Real-Scale Overtopping Experiments. Water 2021, 13, 2482. https://doi.org/10.3390/w13182482
Kang W, Ko D, Kang J. Erosion Resistance Performance of Surface-Reinforced Levees Using Novel Biopolymers Investigated via Real-Scale Overtopping Experiments. Water. 2021; 13(18):2482. https://doi.org/10.3390/w13182482
Chicago/Turabian StyleKang, Woochul, Dongwoo Ko, and Joongu Kang. 2021. "Erosion Resistance Performance of Surface-Reinforced Levees Using Novel Biopolymers Investigated via Real-Scale Overtopping Experiments" Water 13, no. 18: 2482. https://doi.org/10.3390/w13182482
APA StyleKang, W., Ko, D., & Kang, J. (2021). Erosion Resistance Performance of Surface-Reinforced Levees Using Novel Biopolymers Investigated via Real-Scale Overtopping Experiments. Water, 13(18), 2482. https://doi.org/10.3390/w13182482