Microplastics in Agricultural Soils: A Case Study in Cultivation of Watermelons and Canning Tomatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples Collection
2.2. Materials
2.3. Floatation with NaCl Solution
2.4. Instruments
3. Results and Discussion
3.1. Microplastic Identification and Characterization
3.2. Microplastic Origin and Formation
3.3. Microplastic Abundance
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total. Environ. 2018, 612, 422–435. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. Trends Analyt. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- Papaioannou, D.; Kalavrouziotis, I.K. Possibleeffects on plants due to microplastics in soils from wastewater effluent reuse or sewage sludge application. In Microplastics in Water and Wastewater, 2nd ed.; Karapanagioti, H.K., Kalavrouziotis, I.K., Eds.; International Water Association: London, UK, 2020; pp. 159–175. [Google Scholar]
- Jansen, L.; Henskens, M.; Hiemstra, F. Report on Use of Plastics in Agriculture; Schuttelaar & Partners Edition: Wageningen, The Netherland, 2019; p. 19. [Google Scholar]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watts, A.J.; Lewis, C.; Goodhead, R.M.; Beckett, S.J.; Moger, J.; Tyler, C.R.; Galloway, T.S. Uptake and retention of microplastics by the shore crab Carcinus maenas. Environ. Sci. Technol. 2014, 48, 8823–8830. [Google Scholar] [CrossRef] [PubMed]
- Orhan, Y.; Hrenović, J.; Büyükgüngöra, H. Biodegradation of plastic compost bags under controlled soil conditions. Acta Chim. Slov. 2004, 51, 579–588. [Google Scholar]
- Scarascia–Mugnozza, G.; Sica, C.; Russo, G. Plastic materials in European agriculture: Actual use and perspectives. J. Agric. Eng. 2011, 42, 15–28. [Google Scholar] [CrossRef]
- GESAMP. Chapter 3.1.2 Defining ‘microplastics’. Sources, fate and effects of microplastics in the marine environment: A global assessment. In (IMO/FAO/UNESCO–IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Expertson the Scientific Aspects of Marine Environmental Protection (GESAMP)); Kershaw, P.J., Ed.; GESAMP No. 90: London, UK, 2015; p. 96. [Google Scholar]
- Jung, M.R.; Horgen, F.D.; Orski, S.V.; Rodriguez, V.; Beers, K.L.; Balazs, G.H.; Lynch, J.M. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Tziourrou, P.; Kordella, S.; Ardali, Y.; Papatheodorou, G.; Karapanagioti, H.K. Microplastics formation based on degradation characteristics of beached plastic bags. Mar. Pollut. Bull. 2021, 169, 112470. [Google Scholar] [CrossRef] [PubMed]
- Iannilli, V.; Di Gennaro, A.; Lecce, F.; Sighicelli, M.; Falconieri, M.; Pietrelli, L.; Battisti, C. Microplastics in Talitrus saltator (Crustacea, Amphipoda): New evidence of ingestion from natural contexts. Environ. Sci. Pollut. Res. 2018, 25, 28725–28729. [Google Scholar] [CrossRef] [PubMed]
- Fotopoulou, K.; Karapanagioti, H.K. Surface properties of beached plastics. Environ. Sci. Pollut. Res. 2015, 22, 11022–11032. [Google Scholar]
- Gniadek, M.; Dąbrowska, A. The marine nano-and microplastics characterisation by SEM-EDX: The potential of the method in comparison with various physical and chemical approaches. Mar. Pollut. Bull. 2019, 148, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [PubMed]
- Feng, S.; Lu, H.; Liu, Y. The occurrence of microplastics in farmland and grassland soils in the Qinghai-Tibet plateau: Different land use and mulching time in facility agriculture. Environ. Pollut. 2021, 279, 116939. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.L.; Lwanga, E.H.; Eldridge, S.M.; Johnston, P.; Hu, H.W.; Geissen, V.; Chen, D. An overview of microplastic and nanoplastic pollution in agroecosystems. Sci. Total Environ. 2018, 627, 1377–1388. [Google Scholar] [CrossRef] [PubMed]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Yan, C.; He, W.; Mei, X. Agricultural Application of Plastic Film and Its Residue Pollution Prevention; Science Press: Beijing, China, 2010; pp. 76–86. [Google Scholar]
- Liu, M.; Lu, S.; Song, Y.; Lei, L.; Hu, J.; Lv, W.; Zhou, W.; Cao, C.; Shi, H.; Yang, X.; et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut. 2018, 242, 855–862. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Gertsen, H.; Peters, P.; Salanki, T.; Geissen, V. A simple method for the extraction and identification of light density microplastics from soil. Sci. Total Environ. 2018, 616, 1056–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MPs (Items kg−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample | 3 Soil Replicates | 3 Soil Replicates | 3 Soil Replicates Total | Mean | |||||||
(20 μm < MPs < 500 μm) | (500 μm ≤ MPs < 5 mm) | Value ± STD | |||||||||
WSS | WSS_1 | 14 | 20 | 13 | 173 | 253 | 187 | 187 | 273 | 200 | 220 ± 47 |
WSS_2 | 13 | 27 | 27 | 287 | 333 | 320 | 300 | 360 | 347 | 336 ± 32 | |
WSS_3 | 7 | 6 | 20 | 160 | 247 | 127 | 167 | 253 | 147 | 189 ± 57 | |
WSS_4 | 22 | 15 | 18 | 525 | 545 | 542 | 547 | 560 | 560 | 556 ± 8 | |
WSS_5 | 20 | 7 | 7 | 207 | 180 | 200 | 227 | 187 | 207 | 207 ± 20 | |
TSS | TSS_1 | 27 | 40 | 40 | 20 | 13 | 13 | 47 | 53 | 53 | 51 ± 4 |
TSS_2 | 33 | 20 | 27 | 27 | 20 | 33 | 60 | 40 | 60 | 53 ± 12 | |
TSS_3 | 64 | 67 | 76 | 93 | 53 | 67 | 157 | 120 | 143 | 140 ± 19 | |
TSS_4 | 53 | 0 | 14 | 20 | 60 | 33 | 73 | 60 | 47 | 60 ± 13 | |
TSS_5 | 13 | 7 | 13 | 47 | 13 | 27 | 60 | 20 | 40 | 40 ± 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isari, E.A.; Papaioannou, D.; Kalavrouziotis, I.K.; Karapanagioti, H.K. Microplastics in Agricultural Soils: A Case Study in Cultivation of Watermelons and Canning Tomatoes. Water 2021, 13, 2168. https://doi.org/10.3390/w13162168
Isari EA, Papaioannou D, Kalavrouziotis IK, Karapanagioti HK. Microplastics in Agricultural Soils: A Case Study in Cultivation of Watermelons and Canning Tomatoes. Water. 2021; 13(16):2168. https://doi.org/10.3390/w13162168
Chicago/Turabian StyleIsari, Ekavi A., Dimitrios Papaioannou, Ioannis K. Kalavrouziotis, and Hrissi K. Karapanagioti. 2021. "Microplastics in Agricultural Soils: A Case Study in Cultivation of Watermelons and Canning Tomatoes" Water 13, no. 16: 2168. https://doi.org/10.3390/w13162168
APA StyleIsari, E. A., Papaioannou, D., Kalavrouziotis, I. K., & Karapanagioti, H. K. (2021). Microplastics in Agricultural Soils: A Case Study in Cultivation of Watermelons and Canning Tomatoes. Water, 13(16), 2168. https://doi.org/10.3390/w13162168