A Study to Suggest Monthly Baseflow Estimation Approach for the Long-Term Hydrologic Impact Analysis Models: A Case Study in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Decription of the Study Area
2.2. Baseflow Separation
2.3. Monthly Baseflow Estimation Approach
3. Results and Discussion
3.1. Determination of Regression Model Coefficients
3.2. Validation of Regression Model Coefficients
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieger, K.; Hörmann, G.; Fohrer, N. The impact of land use change in the Xiangxi Catchment (China) on water balance and sediment transport. Reg. Environ. Chang. 2013, 15, 485–498. [Google Scholar] [CrossRef]
- Arnold, J.; Srinivasan, R.; Muttiah, R.; Williams, J. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water. Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Guse, B.; Pfannerstill, M.; Fohrer, N. Dynamic modelling of land use change impacts on nitrate loads in rivers. Environ. Process. 2015, 2, 575–592. [Google Scholar] [CrossRef]
- Martin, K.L.; Hwang, T.; Vose, J.M.; Coulston, J.W.; Wear, D.N.; Miles, B.; Band, L.E. Watershed impacts of climate and land use changes depend on magnitude and land use context. Ecohydrology 2017, 10, e1870. [Google Scholar] [CrossRef]
- Tague, C.L.; Band, L.E. RHESSys: Regional Hydro-Ecologic Simulation System-An object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interact. 2004, 8, 1–42. [Google Scholar] [CrossRef]
- Srivastava, A.; Kumari, N.; Maza, M. Hydrological response to agricultural land use heterogeneity using variable infiltration capacity model. Water Resour. Manag. 2020, 34, 3779–3794. [Google Scholar] [CrossRef]
- Aghsaei, H.; Dinan, N.M.; Moridi, A.; Asadolahi, Z.; Delavar, M.; Fohrer, N.; Wagner, P.D. Effect of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Sci. Total Environ. 2020, 712, 136449. [Google Scholar] [CrossRef] [PubMed]
- Harbor, J. A practical method for estimating the impact of land-use change on surface runoff, groundwater recharge, and wetland hydrology. J. Am. Plann. Assoc. 1994, 60, 95–108. [Google Scholar] [CrossRef]
- Bhaduri, B. A GIS-Based Model to Assess the Long-Term Impacts of Land Use Change on Hydrology and Nonpoint Source Pollution. Ph.D. Thesis, Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN, USA, 1998. [Google Scholar]
- Grove, M. Development and Application of a GIS-Based Model for Assessing the Long-Term Hydrologic Impacts of Land Use Change. Master’s Thesis, Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN, USA, 1997. [Google Scholar]
- Lim, K.J.; Engel, B.; Kim, Y.; Bhaduri, B.; Harbor, J. Development of the Long Term Hydrologic Impact Assessment (L-THIA) WWW systems. In Proceedings of the 10th International Soil Conservation Organization Meeting, Purdue University and USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, IN, USA, 24–29 May 1999. [Google Scholar]
- Bhaduri, B.; Harbor, J.; Engel, B.; Grove, M. Assessing watershed-scale, long-term hydrologic impacts of land-use change using a GIS-NPS model. Environ. Manag. 2000, 26, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.; Weng, Q. Assessing surface water quality and its relation with urban land cover changes in the Lake Calumet area, Greater Chicago. Environ. Manag. 2010, 45, 1096–1111. [Google Scholar] [CrossRef]
- Liu, Y.; Bralts, V.F.; Engel, B.A. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model. Sci. Total Environ. 2015, 511, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Representation and evaluation of low impact development practices with L-THIA-LID: An example for site planning. Environ. Pollut. 2012, 1. [Google Scholar] [CrossRef]
- Eaton, T.T. Approach and case-study of green infrastructure screening analysis for urban stormwater control. J. Environ. Manag. 2018, 209, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, J.; Liu, Y.; Xu, P.; Sun, H.; Engel, B.A.; Wang, S. Assessment of the impact of land use/cover change and rainfall change on surface runoff in China. Sustainability 2019, 11, 3535. [Google Scholar] [CrossRef] [Green Version]
- ArcL-THIA Park, Y.S.; Lim, K.J.; Larry, T.; Engel, B.A.; Long-Term Hydrologic Impact Assessment. Department of Agricultural and Biological Engineering. 2013. Available online: http://npslab.kongju.ac.kr/models/LTHIA2013_Manual.pdf (accessed on 13 August 2018).
- Arnold, J.G.; Allen, P.M. Automated methods for estimating baseflow and ground water recharge from streamflow records. J. Am. Water Resour. Assoc. 1999, 35, 411–424. [Google Scholar] [CrossRef]
- Ahiablame, L.; Chaubey, I.; Engel, B.; Cherkauer, K.; Merwade, V. Estimation of annual baseflow at ungauged sites in Indiana USA. J. Hydrol. 2013, 476, 13–27. [Google Scholar] [CrossRef]
- Ryu, J.; Jang, W.S.; Kim, J.; Choi, J.D.; Engel, B.A.; Yang, J.E.; Lim, K.J. Development of a watershed-scale long-term hydrologic impact assessment model with the asymptotic curve number regression equation. Water 2016, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Environmental Geographic Information Service. Available online: https://egis.me.go.kr/main.do (accessed on 5 January 2021).
- Korea Meteorological Administration. Available online: https://www.weather.go.kr/w/index.do (accessed on 7 January 2021).
- Water Resources Management Information System. Available online: http://water.nier.go.kr/main/mainContent.do (accessed on 7 January 2021).
- Eckhardt, K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. 2005, 19, 507–515. [Google Scholar] [CrossRef]
- Tetra Tech, Inc. User’s Guide Spreadsheet Tool for the Estimation of Pollutant Load (STEPL) Version 4.1; Tetra Tech, Inc.: Fairfax, VA, USA, 2011. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Lim, K.J.; Park, Y.S.; Kim, J.; Shin, Y.C.; Kim, N.W.; Kim, S.J.; Jeon, J.H.; Engel, B.A. Development of genetic algorithm-based optimization module in WHAT system for hydrograph analysis and model application. Comput. Geosci. 2010, 36, 936–944. [Google Scholar] [CrossRef]
- Toğan, V.; Daloğlu, T.A. An improved genetic algorithm with initial population strategy and self-adaptive member grouping. Comput. Struct. 2008, 86, 1204–1218. [Google Scholar] [CrossRef]
- Park, Y.S.; Engel, B.A.; Harbor, J. A web-based model to estimate the impact of best management practices. Water 2014, 6, 455–471. [Google Scholar] [CrossRef] [Green Version]
- Duda, P.B.; Hummel, P.R.; Donigian, A.S.; Imhoff, J.C. BASINS/HSPF: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1523–1547. [Google Scholar] [CrossRef]
- Skaggs, R.W.; Youssef, M.A.; Chescheir, G.M. DRAINMOD: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1509–1522. [Google Scholar] [CrossRef]
- Wang, X.; Williams, J.; Gassman, P.; Baffaut, C.; Izaurralde, R.; Jeong, J.; Kiniry, J. EPIC and APEX: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1447–1462. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Am. Soc. Agric. Biol. Eng. 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
Watershed | Area (ha) | |||||||
---|---|---|---|---|---|---|---|---|
Urban | Agriculture | Forest | Pasture | Wetland | Bare land | Water | Total | |
Wsd-01 | 590.3 | 372.2 | 4637.7 | 27.1 | 26.1 | 41.3 | 0.1 | 5694.8 |
Wsd-02 | 2042.1 | 2741.0 | 1447.9 | 199.0 | 36.1 | 121.7 | 12.2 | 6600.0 |
Wsd-03 | 196.3 | 1169.7 | 9256.9 | 82.7 | 9.1 | 121.8 | 9.4 | 10,845.8 |
Wsd-04 | 569.7 | 1536.9 | 9425.8 | 142.7 | 63.4 | 126.7 | 47.8 | 11,912.9 |
Wsd-05 | 656.4 | 479.5 | 11,134.4 | 214.9 | 0.0 | 142.8 | 2.3 | 12,630.2 |
Wsd-06 | 435.7 | 3361.2 | 9002.8 | 224.6 | 4.9 | 155.4 | 36.0 | 13,220.6 |
Wsd-07 | 131.4 | 1979.7 | 11,115.2 | 281.0 | 13.1 | 72.2 | 108.5 | 13,701.0 |
Wsd-08 | 983.1 | 2266.7 | 11,494.5 | 565.4 | 35.9 | 149.0 | 45.5 | 15,540.0 |
Wsd-09 | 20.2 | 1472.9 | 15,794.5 | 92.6 | 0.0 | 18.0 | 0.0 | 17,398.2 |
Wsd-10 | 843.6 | 5017.5 | 11,771.9 | 269.2 | 112.4 | 424.5 | 131.6 | 18,570.7 |
Wsd-11 | 165.2 | 2317.5 | 16,250.0 | 239.0 | 0.3 | 55.8 | 76.1 | 19,103.8 |
Wsd-12 | 343.8 | 5118.2 | 14,822.7 | 200.6 | 85.8 | 152.5 | 111.8 | 20,835.4 |
Wsd-13 | 770.9 | 5908.7 | 26,938.4 | 934.1 | 288.9 | 289.4 | 301.8 | 35,432.1 |
Wsd-14 | 404.8 | 7297.3 | 26,403.6 | 1158.6 | 0.1 | 384.5 | 179.5 | 35,828.3 |
Wsd-15 | 278.2 | 4779.9 | 35,251.6 | 327.5 | 120.3 | 228.2 | 342.6 | 41,328.3 |
Wsd-16 | 2454.4 | 5312.6 | 32,486.2 | 1044.5 | 186.9 | 655.1 | 618.9 | 42,758.7 |
Wsd-17 | 1347.9 | 8703.7 | 31,043.6 | 1322.7 | 259.1 | 320.0 | 380.6 | 43,377.7 |
Wsd-18 | 2098.6 | 21,737.3 | 23,612.5 | 2642.9 | 49.7 | 1319.6 | 480.9 | 51,941.4 |
Wsd-19 | 347.6 | 5614.7 | 73,684.2 | 601.7 | 0.1 | 371.1 | 94.0 | 80,713.3 |
Wsd-20 | 1763.3 | 17,163.2 | 130,735.8 | 1857.5 | 274.1 | 644.0 | 3368.2 | 155,805.9 |
Watershed | Monthly Precipitation (mm) | Daily Stream Flow (m3/s) | |||
---|---|---|---|---|---|
min. | max. | min. | max. | Mean | |
Wsd-01 | 0.5 | 635.5 | 0.02 | 118.65 | 1.31 |
Wsd-02 | 2.1 | 738.1 | 0.16 | 341.68 | 1.98 |
Wsd-03 | 4.1 | 628.0 | 0.01 | 241.93 | 3.20 |
Wsd-04 | 2.1 | 738.1 | 0.01 | 191.06 | 2.71 |
Wsd-05 | 1.5 | 494.4 | 0.07 | 133.19 | 3.18 |
Wsd-06 | 3.5 | 822.0 | 0.01 | 1496.45 | 4.33 |
Wsd-07 | 8.1 | 587.5 | 0.01 | 247.78 | 4.03 |
Wsd-08 | 2.0 | 469.5 | 0.13 | 380.58 | 4.07 |
Wsd-09 | 1.0 | 761.5 | 0.10 | 189.60 | 3.13 |
Wsd-10 | 2.1 | 738.1 | 0.13 | 995.01 | 5.38 |
Wsd-11 | 7.6 | 631.4 | 0.02 | 618.54 | 5.49 |
Wsd-12 | 0.5 | 492.6 | 0.05 | 202.72 | 4.06 |
Wsd-13 | 0.9 | 588.1 | 0.05 | 312.41 | 6.78 |
Wsd-14 | 3.5 | 822.0 | 0.01 | 661.89 | 7.53 |
Wsd-15 | 0.8 | 712.0 | 0.10 | 894.30 | 10.44 |
Wsd-16 | 5.7 | 498.3 | 0.30 | 697.60 | 10.28 |
Wsd-17 | 1.8 | 451.5 | 0.01 | 702.76 | 7.73 |
Wsd-18 | 1.3 | 616.7 | 0.13 | 1039.87 | 9.39 |
Wsd-19 | 0.7 | 606.5 | 0.60 | 736.20 | 17.99 |
Wsd-20 | 4.1 | 628.0 | 0.50 | 1160.00 | 21.72 |
Watershed | Streamflow (×106 m3) | Baseflow (×106 m3) | Mean Flow Percentage (%) | ||||
---|---|---|---|---|---|---|---|
min. | max. | Mean | min. | max. | Mean | ||
Wsd-01 | 0.136 | 28.600 | 3.544 | 0.104 | 8.862 | 1.552 | 43.8 |
Wsd-02 | 1.045 | 44.823 | 5.211 | 0.763 | 11.033 | 2.240 | 43.0 |
Wsd-03 | 0.003 | 69.717 | 8.160 | 0.002 | 20.880 | 3.520 | 43.1 |
Wsd-04 | 0.185 | 57.876 | 7.011 | 0.037 | 20.724 | 3.010 | 42.9 |
Wsd-05 | 0.710 | 41.993 | 8.360 | 0.428 | 15.645 | 4.026 | 48.2 |
Wsd-06 | 0.219 | 214.748 | 11.375 | 0.178 | 59.278 | 4.752 | 41.8 |
Wsd-07 | 0.535 | 66.047 | 10.290 | 0.314 | 24.568 | 4.378 | 42.6 |
Wsd-08 | 0.743 | 98.042 | 10.432 | 0.491 | 27.205 | 4.254 | 40.8 |
Wsd-09 | 0.164 | 76.421 | 8.166 | 0.046 | 26.349 | 3.792 | 46.4 |
Wsd-10 | 2.035 | 172.189 | 14.231 | 1.065 | 61.150 | 6.888 | 48.4 |
Wsd-11 | 0.328 | 147.041 | 14.450 | 0.236 | 54.088 | 6.187 | 42.8 |
Wsd-12 | 1.457 | 75.855 | 11.120 | 1.168 | 38.142 | 5.956 | 53.6 |
Wsd-13 | 1.456 | 110.265 | 18.222 | 0.632 | 61.698 | 9.312 | 51.1 |
Wsd-14 | 0.902 | 151.183 | 19.463 | 0.178 | 66.078 | 10.207 | 52.4 |
Wsd-15 | 0.130 | 199.930 | 26.542 | 0.052 | 78.220 | 8.681 | 32.7 |
Wsd-16 | 3.707 | 117.337 | 27.034 | 1.972 | 44.484 | 13.595 | 50.3 |
Wsd-17 | 0.212 | 95.168 | 19.108 | 0.041 | 33.397 | 7.194 | 37.6 |
Wsd-18 | 0.481 | 280.725 | 24.998 | 0.421 | 123.584 | 13.505 | 54.0 |
Wsd-19 | 7.379 | 375.978 | 48.052 | 4.087 | 194.168 | 28.456 | 59.2 |
Wsd-20 | 8.027 | 524.906 | 57.826 | 5.825 | 201.185 | 30.414 | 52.6 |
Watershed | CURBN | CAGRL | CFRST | CPAST | CWTLD | CBARE | CWATR |
---|---|---|---|---|---|---|---|
Wsd-01 | 0.02241 | 0.10076 | 0.25373 | 0.09274 | 0.52890 | 0.09265 | 0.04994 |
Wsd-02 | 0.03981 | 0.48080 | 0.01256 | 0.18411 | 0.05222 | 0.21955 | 0.24430 |
Wsd-04 | 0.06314 | 0.19460 | 0.21289 | 0.24017 | 0.70207 | 0.03488 | 0.04919 |
Wsd-06 | 0.03137 | 0.49061 | 0.27421 | 0.07913 | 0.24028 | 0.19144 | 0.14365 |
Wsd-08 | 0.02437 | 0.35966 | 0.26696 | 0.08260 | 0.17413 | 0.09301 | 0.18265 |
Wsd-10 | 0.05851 | 0.42420 | 0.28413 | 0.23152 | 0.47602 | 0.21825 | 0.31505 |
Wsd-12 | 0.06050 | 0.23236 | 0.25996 | 0.15333 | 0.67417 | 0.11600 | 0.20427 |
Wsd-14 | 0.03400 | 0.39035 | 0.14121 | 0.28233 | 0.70807 | 0.17528 | 0.29423 |
Wsd-16 | 0.00289 | 0.33503 | 0.24279 | 0.12178 | 0.78599 | 0.23603 | 0.38384 |
Wsd-18 | 0.03494 | 0.34299 | 0.15810 | 0.17155 | 0.27299 | 0.23278 | 0.20131 |
Wsd-20 | 0.04969 | 0.47828 | 0.12389 | 0.31460 | 0.61544 | 0.04141 | 0.30796 |
Min. | 0.00289 | 0.10076 | 0.01256 | 0.07913 | 0.05222 | 0.03488 | 0.04919 |
Max. | 0.06314 | 0.49061 | 0.28413 | 0.31460 | 0.78599 | 0.23603 | 0.38384 |
Mean | 0.03833 | 0.34815 | 0.20277 | 0.17762 | 0.47548 | 0.15012 | 0.21603 |
Final value | 0.04 | 0.40 | 0.20 | 0.18 | 0.48 | 0.15 | 0.22 |
Watershed | R2 | NSE |
---|---|---|
Wsd-01 | 0.736 | 0.504 |
Wsd-02 | 0.607 | 0.563 |
Wsd-04 | 0.634 | 0.507 |
Wsd-06 | 0.600 | 0.565 |
Wsd-08 | 0.704 | 0.679 |
Wsd-10 | 0.708 | 0.536 |
Wsd-12 | 0.697 | 0.547 |
Wsd-14 | 0.688 | 0.583 |
Wsd-16 | 0.817 | 0.623 |
Wsd-18 | 0.785 | 0.677 |
Wsd-20 | 0.691 | 0.677 |
Watershed | R2 | NSE |
---|---|---|
Wsd-03 | 0.630 | 0.569 |
Wsd-05 | 0.739 | 0.727 |
Wsd-07 | 0.664 | 0.567 |
Wsd-09 | 0.618 | 0.606 |
Wsd-11 | 0.658 | 0.647 |
Wsd-13 | 0.689 | 0.632 |
Wsd-15 | 0.728 | 0.670 |
Wsd-17 | 0.786 | 0.674 |
Wsd-19 | 0.626 | 0.571 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Choi, H.-S.; Chae, M.-S.; Park, Y.-S. A Study to Suggest Monthly Baseflow Estimation Approach for the Long-Term Hydrologic Impact Analysis Models: A Case Study in South Korea. Water 2021, 13, 2043. https://doi.org/10.3390/w13152043
Lee H, Choi H-S, Chae M-S, Park Y-S. A Study to Suggest Monthly Baseflow Estimation Approach for the Long-Term Hydrologic Impact Analysis Models: A Case Study in South Korea. Water. 2021; 13(15):2043. https://doi.org/10.3390/w13152043
Chicago/Turabian StyleLee, Hanyong, Hyun-Seok Choi, Min-Suh Chae, and Youn-Shik Park. 2021. "A Study to Suggest Monthly Baseflow Estimation Approach for the Long-Term Hydrologic Impact Analysis Models: A Case Study in South Korea" Water 13, no. 15: 2043. https://doi.org/10.3390/w13152043
APA StyleLee, H., Choi, H.-S., Chae, M.-S., & Park, Y.-S. (2021). A Study to Suggest Monthly Baseflow Estimation Approach for the Long-Term Hydrologic Impact Analysis Models: A Case Study in South Korea. Water, 13(15), 2043. https://doi.org/10.3390/w13152043