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Abstract: Changes in both land use and rainfall patterns can lead to changes in the hydrologic
behavior of the watershed. The long-term hydrologic impact analysis (L-THIA) model has been
used to predict such changes and analyze the changes in mitigation scenarios. The model is simple
as only a small amount of input data are required, but it can predict only the direct runoff and
cannot determine the streamflow. This study, therefore, aimed to propose a method for predicting
the monthly baseflow while maintaining the simplicity of the model. The monthly baseflows for
20 watersheds in South Korea were estimated under different land use conditions. Calibration of the
monthly baseflow prediction method produced values for R2 and the Nash–Sutcliffe efficiency (NSE)
within the ranges of 0.600–0.817 and 0.504–0.677, respectively; during validation, these values were
in the ranges of 0.618–0.786 and 0.567–0.727, respectively. This indicates that the proposed method
can reliably predict the monthly baseflow while maintaining the simplicity of the L-THIA model.
The proposed model is expected to be applicable to all the various forms of the model.

Keywords: L-THIA model; monthly baseflow; hydrological watershed modeling

1. Introduction

Changes in land use or rainfall pattern not only change the behavior of direct runoff
and baseflow in the watershed, but also affect the occurrence of nonpoint source (NPS)
pollution. Urbanization and industrialization have increased the ratio of impervious sur-
faces in watersheds. Therefore, it is necessary to analyze such changes in land use and
investigate scenarios that may reduce the impacts of these changes. Hydrologic models are
generally used for such analyses; Bieger et al. [1] assessed the impact of land use changes
using the soil and water assessment tool (SWAT) [2,3], and three land use scenarios for
forest, cropland, and orchard area changes were established. The result indicated that forest,
cropland, and orchard area changes of −34.48%, +265.32%, and 204.51% led to surface
flow increases of 46.1%. Guse et al. [4] analyzed the impact of spatially distributed five
crop rotations using the SWAT model; nitrate loads were reduced with dynamic changes
in agricultural crop rotations. Martin et al. [5] used the regional hydro-ecological simula-
tion system model [6]; the study result indicated that high flows (highest 10 percentiles)
increased by 37–88% and that low flows (lowest 10 percentiles) increased by 23–37% by
land use changes. Additionally, Srivastava et al. [7] and Aghsaei et al. [8] reported that
vegetation can provide a significant effect on hydrological components with the variations
in the physical characteristics of the land surface, soil, and vegetation, which are the rough-
ness, albedo, architectural resistance, infiltration capacity, leaf area index, root depth, and
stomatal conductance.

The long-term hydrologic impact analysis (L-THIA) model has been in use for this
purpose since 1994 [9]. The L-THIA model was first developed in the form of a spreadsheet
in 1994 [9], followed by redevelopment so that it could be integrated with geographic
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information systems (GIS) [10,11]. However, the model is limited in terms of reflecting
the various types of land use. To counter such limitations, Lim et al. [12] developed the
L-THIA/NPS WWW model so that L-THIA could be used in the form of a spreadsheet in
L-THIA/NPS GIS, which is based on the ArcView software. Bhaduri et al. [13] used the
GIS-based L-THIA/NPS GIS model to predict changes in the direct runoff and pollution
from nonpoint sources resulting from land use changes; they reported that the average
annual direct runoff increased by 80%, while with pollution from lead, copper, and zinc
increased by more than 50% as the urban and impervious area increased by 18% during
the period 1973–1991. Wilson and Weng [14] analyzed changes in the direct runoff that
were caused by land use changes using the L-THIA NPS model, which is an ArcHydro
GIS extension. They reported a two-fold increase in the direct runoff in places where the
residential land use increased by 37.3%, even though the precipitation increased by <30%.
Liu et al. [15] considered best management practices (BMPs) such as the implementation
of wet ponds, green roofs, and bioretention or the construction cost, annual maintenance
cost, and interest rate of 12 techniques that belong to low impact development (LIDs) using
the L-THIA-LID model [16]. They determined cost-effective strategies for 15 scenarios to
reduce direct runoff, total nitrogen (TN), total phosphorus (TP), total suspended solids
(TSS), Pb, biochemical oxygen demand (BOD), and chemical oxygen demand (COD).
Eaton [17] analyzed a direct runoff reduction method using the L-THIA LID model to
analyze green infrastructure screening and reported that direct runoff can be reduced
by 12% by using bioretention and raingardens in the watershed. Li et al. [18] analyzed
changes in the surface runoff caused by land use and rainfall changes using the ArcL-THIA
10.1 model that is based on ArcGIS 10.0 [19]. The authors calibrated the ArcL-THIA
10.1 model by using the baseflow filter program (BFLOW) [20] model to separate direct
runoff; they reported that enhanced precipitation contributed more significantly to the
observed changes compared to land use during the period 2005–2015.

Different methods for analyzing scenarios resulting from changes in land use or rainfall
conditions, which also consider baseflow, have been proposed for the L-THIA model.
Ahiablame et al. [21] analyzed the effects of rain barrel/cistern and porous pavement
using the LTHIA-LID model in their study, which reflected the influence of baseflow. The
annual baseflow regression equation, which includes the area of the watershed, annual
precipitation, and baseflow index, was utilized for baseflow analysis in the L-THIA model.
However, as this method can only predict the annual baseflow, it has limitations when used
to determine monthly characteristics. Ryu et al. [22] improved the prediction process of the
existing L-THIA in detail by using the asymptotic curve number (ACN) instead of CN for
predicting the direct runoff. This made it possible to predict streamflow by adding modules
for baseflow predictions and channel routing to overcome the most significant limitations
of the existing L-THIA. However, this process involves an increase in the complexity of
the model as three additional model parameters related to direct runoff prediction, four
model parameters related to baseflow prediction, and three model parameters related to
channel routing prediction were required, and the need for an optimization algorithm was
suggested for calibrating the model.

The L-THIA model is based on spreadsheets [9,16] and GIS [10–14,19]. It has been in
continuous use since its conception for analyzing direct runoff resulting from changes in
land use or rainfall patterns as well as the effects of BMP and LID techniques. However, a
comparison of the predictions made using this model with actual streamflow is required
to improve the utility of this model. In addition, it is necessary to reflect the influence of
baseflow on the analysis process based on this model. However, the model is generally
used for the above purposes because of its simplicity, as it requires only input data to
define CN and its computation process is not complicated. It is, therefore, necessary to
maintain the current benefits of this model while predicting baseflow. This study aims
to propose a method for predicting the baseflow while maintaining the simplicity of the
current L-THIA model.
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2. Materials and Methods
2.1. Decription of the Study Area

As the purpose of this study is the proposal of a method that can predict baseflow
while maintaining the simplicity of the current L-THIA model, streamflow data describing
the runoff in a watershed, the land use map, and monthly precipitation data were required
as input into the L-THIA model.

The land use map (scale at 1:5000) was provided by the Environmental Geographic
Information Service [23]; the monthly precipitation data were provided by the Korea
Meteorological Administration [24]; the daily stream flow data were acquired from the
Water Resources Management Information System (WAMIS) [25]. These data were used in
this study. The watersheds selected for the study include the flow data measurement points
operated by WAMIS as watershed outlets, and they are distributed such that the conditions
in various regions of Korea are considered without any spatial overlap (Figure 1). A total
of 20 watersheds were selected with areas ranging from 5694.8 to 155,805.9 ha (Table 1).
The land use types were classified into urban, agriculture, forest, pasture, wetland, bare
land, and water. Forest occupied the largest area in all the watersheds studied, followed
by agriculture. The exception to this trend was Wsd-02 in which agriculture (2741.0 ha)
represented the largest proportion (41.5%), followed by urban (2042.1 ha), which accounted
for 30.9% of the watershed area (Table 1).

Figure 1. Location of study watershed.

Table 1. Land uses in the study watersheds.

Watershed
Area (ha)

Urban Agriculture Forest Pasture Wetland Bare land Water Total

Wsd-01 590.3 372.2 4637.7 27.1 26.1 41.3 0.1 5694.8
Wsd-02 2042.1 2741.0 1447.9 199.0 36.1 121.7 12.2 6600.0
Wsd-03 196.3 1169.7 9256.9 82.7 9.1 121.8 9.4 10,845.8
Wsd-04 569.7 1536.9 9425.8 142.7 63.4 126.7 47.8 11,912.9
Wsd-05 656.4 479.5 11,134.4 214.9 0.0 142.8 2.3 12,630.2
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Table 1. Cont.

Watershed
Area (ha)

Urban Agriculture Forest Pasture Wetland Bare land Water Total

Wsd-06 435.7 3361.2 9002.8 224.6 4.9 155.4 36.0 13,220.6
Wsd-07 131.4 1979.7 11,115.2 281.0 13.1 72.2 108.5 13,701.0
Wsd-08 983.1 2266.7 11,494.5 565.4 35.9 149.0 45.5 15,540.0
Wsd-09 20.2 1472.9 15,794.5 92.6 0.0 18.0 0.0 17,398.2
Wsd-10 843.6 5017.5 11,771.9 269.2 112.4 424.5 131.6 18,570.7
Wsd-11 165.2 2317.5 16,250.0 239.0 0.3 55.8 76.1 19,103.8
Wsd-12 343.8 5118.2 14,822.7 200.6 85.8 152.5 111.8 20,835.4
Wsd-13 770.9 5908.7 26,938.4 934.1 288.9 289.4 301.8 35,432.1
Wsd-14 404.8 7297.3 26,403.6 1158.6 0.1 384.5 179.5 35,828.3
Wsd-15 278.2 4779.9 35,251.6 327.5 120.3 228.2 342.6 41,328.3
Wsd-16 2454.4 5312.6 32,486.2 1044.5 186.9 655.1 618.9 42,758.7
Wsd-17 1347.9 8703.7 31,043.6 1322.7 259.1 320.0 380.6 43,377.7
Wsd-18 2098.6 21,737.3 23,612.5 2642.9 49.7 1319.6 480.9 51,941.4
Wsd-19 347.6 5614.7 73,684.2 601.7 0.1 371.1 94.0 80,713.3
Wsd-20 1763.3 17,163.2 130,735.8 1857.5 274.1 644.0 3368.2 155,805.9

The analysis period was set to the five-year period from 1 January 2016 to 31 December
2020. The minimum monthly precipitation in each watershed ranged from 0.5 mm (Wsd-01)
to 8.1 mm (Wsd-07), whereas the maximum monthly precipitation ranged from 454.5 mm
(Wsd-17) to 822.0 mm (Wsd-14). The maximum precipitation was, therefore, 73 times
(Wsd-07) to 1271 times (Wsd-01) higher than the minimum in each watershed, indicating a
significant difference in monthly precipitation (Table 2).

Table 2. Statistics of monthly precipitation and daily stream flow.

Watershed
Monthly Precipitation (mm) Daily Stream Flow (m3/s)

min. max. min. max. Mean

Wsd-01 0.5 635.5 0.02 118.65 1.31
Wsd-02 2.1 738.1 0.16 341.68 1.98
Wsd-03 4.1 628.0 0.01 241.93 3.20
Wsd-04 2.1 738.1 0.01 191.06 2.71
Wsd-05 1.5 494.4 0.07 133.19 3.18
Wsd-06 3.5 822.0 0.01 1496.45 4.33
Wsd-07 8.1 587.5 0.01 247.78 4.03
Wsd-08 2.0 469.5 0.13 380.58 4.07
Wsd-09 1.0 761.5 0.10 189.60 3.13
Wsd-10 2.1 738.1 0.13 995.01 5.38
Wsd-11 7.6 631.4 0.02 618.54 5.49
Wsd-12 0.5 492.6 0.05 202.72 4.06
Wsd-13 0.9 588.1 0.05 312.41 6.78
Wsd-14 3.5 822.0 0.01 661.89 7.53
Wsd-15 0.8 712.0 0.10 894.30 10.44
Wsd-16 5.7 498.3 0.30 697.60 10.28
Wsd-17 1.8 451.5 0.01 702.76 7.73
Wsd-18 1.3 616.7 0.13 1039.87 9.39
Wsd-19 0.7 606.5 0.60 736.20 17.99
Wsd-20 4.1 628.0 0.50 1160.00 21.72

The minimum daily stream flow ranged from 0.01 m3/s (Wsd-03, Wsd-04, Wsd-06,
Wsd-07, Wsd-14, and Wsd-17) to 0.60 m3/s (Wsd-19), whereas the maximum daily stream
flow ranged from 118.65 m3/s (Wsd-01) to 1160.00 m3/s (Wsd-20). The average daily
stream flow ranged from 1.31 m3/s (Wsd-01) to 21.72 m3/s (Wsd-20) (Table 2). The
difference between the minimum and maximum daily stream flow was significant in each
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watershed. Therefore, it was judged necessary to reflect monthly precipitation conditions
in predicting the monthly baseflow.

2.2. Baseflow Separation

As the purpose of this study is to propose a method for predicting monthly baseflow,
measurement of the actual baseflow is required for comparison. The measured streamflow
is the sum of the surface runoff and the baseflow, which means that it is difficult to evaluate
the monthly baseflow predictions method solely by comparison with the corresponding
streamflow. Therefore, the monthly baseflow prediction method was examined by separat-
ing the baseflow from the streamflow in each watershed using the method suggested by
Eckhardt (Equation (1)). In this baseflow separation method [26], the baseflow on day t (bt)
is determined using the maximum value of the long-term ratio of baseflow to streamflow
(BFImax), the filter parameter (a), the filtered baseflow at the t − 1 time step (bt−1), and the
streamflow at t time step (Qt):

bt =
(1 − BFImax)abt−1 + (1 − a)BFImaxQt

1 − aBFImax
(1)

After separating the baseflow (m3/s) from the streamflow (m3/s) in each watershed
using Equation (1), the baseflow can be expressed (in m3). It reflects the area of each
watershed as shown in Table 3. Overall, the minimum, maximum, and average values
of the streamflow and baseflow showed a tendency to rise as the area of the watershed
increased. The mean flow percentage (%), which is the ratio of baseflow to streamflow,
ranged from 32.7% (Wsd-15) to 59.2% (Wsd-19), indicating significant differences among
the mean flow percentages in each watershed despite the seemingly insignificant differ-
ences observed using the actual numbers. Wsd-15, with a relatively large watershed area,
exhibited the minimum percentage of 32.7%; however, the mean flow percentage showed
a tendency to slightly increase as the watershed area increased. This indicates that it is
necessary to consider parameters related to the area under investigation when predicting
the monthly baseflow.

Table 3. Statistics describing the streamflow and separated baseflow.

Watershed
Streamflow (×106 m3) Baseflow (×106 m3) Mean Flow

Percentage (%)min. max. Mean min. max. Mean

Wsd-01 0.136 28.600 3.544 0.104 8.862 1.552 43.8
Wsd-02 1.045 44.823 5.211 0.763 11.033 2.240 43.0
Wsd-03 0.003 69.717 8.160 0.002 20.880 3.520 43.1
Wsd-04 0.185 57.876 7.011 0.037 20.724 3.010 42.9
Wsd-05 0.710 41.993 8.360 0.428 15.645 4.026 48.2
Wsd-06 0.219 214.748 11.375 0.178 59.278 4.752 41.8
Wsd-07 0.535 66.047 10.290 0.314 24.568 4.378 42.6
Wsd-08 0.743 98.042 10.432 0.491 27.205 4.254 40.8
Wsd-09 0.164 76.421 8.166 0.046 26.349 3.792 46.4
Wsd-10 2.035 172.189 14.231 1.065 61.150 6.888 48.4
Wsd-11 0.328 147.041 14.450 0.236 54.088 6.187 42.8
Wsd-12 1.457 75.855 11.120 1.168 38.142 5.956 53.6
Wsd-13 1.456 110.265 18.222 0.632 61.698 9.312 51.1
Wsd-14 0.902 151.183 19.463 0.178 66.078 10.207 52.4
Wsd-15 0.130 199.930 26.542 0.052 78.220 8.681 32.7
Wsd-16 3.707 117.337 27.034 1.972 44.484 13.595 50.3
Wsd-17 0.212 95.168 19.108 0.041 33.397 7.194 37.6
Wsd-18 0.481 280.725 24.998 0.421 123.584 13.505 54.0
Wsd-19 7.379 375.978 48.052 4.087 194.168 28.456 59.2
Wsd-20 8.027 524.906 57.826 5.825 201.185 30.414 52.6



Water 2021, 13, 2043 6 of 18

2.3. Monthly Baseflow Estimation Approach

A remarkable method that can be used for baseflow prediction is the spreadsheet tool
for the estimation of pollutant load (STEPL) [27] model. This model was proposed by the
U. S. Environmental Protection Agency (U. S. EPA) to establish a total maximum daily load
plan for the United States, and it can analyze the effects of more than 50 BMPs while also
simulating the average annual runoff, sediment, nitrogen, phosphorus, and the BOD. In
this model, prediction of the baseline is based on the annual precipitation, land use, and
hydrologic soil group (HSG). For example, it predicts that the baseflow will correspond to
36, 24, 12, and 6% of the annual precipitation in an urban area when the HSG is A, B, C,
and D, respectively. In this model, land uses other than urban include cropland, pasture,
and forest, but the baseflow is estimated using the same method for all types of area. In
other words, the model predicts that the baseflow will correspond to 45, 30, 15, and 7.5% of
the annual precipitation for the HSGs A, B, C, and D, respectively. Since this method is a
statistical approach with a simple prediction process, it was judged that the application of
this method could also maintain model simplicity in the baseflow prediction process of the
L-THIA model.

A basic formula is required to predict the monthly baseflow. Land use conditions need
to be reflected because the baseflow is likely to vary alongside land use. It was also judged
that monthly rainfall requires consideration because both the baseflow and streamflow
are affected by precipitation. The basic formula for predicting the monthly baseflow is
shown in Equation (2). For predicting the baseflow in month i, this equation considers
the conditions under which precipitation occurs in month i, the coefficient for urban land
(CURBN) and the area covered by urban land (AURBN), the coefficient for agriculture (CAGRL)
and the area of agricultural land (AAGRL), the coefficient for forest (CFRST) and the area of
forested land (AFRST), the coefficient for pasture (CPAST) and the area covered by pasture
(APAST), the coefficient for wetland (CWTLD) and the area covered by wetland (AWTLD),
the coefficient for bare land (CBARE) and the area covered by bare land (ABARE), and the
coefficient for water (CWATR) and the area covered by water (AWATR).

Base f lowi = Precipitationi × (CURBN × AURBN + CAGRL × AAGRL
+CFRST × AFRST + CPAST × APAST + CWTLD × AWTLD
+CBARE × ABARE + CWATR × AWATR)

(2)

Equation (2) can reflect the conditions surrounding both monthly precipitation and
land use for predicting the baseflow, as the coefficients allow the degree of influence from
each land use type to vary. However, the coefficients require definition, for which a genetic
algorithm (GA) [28] was used in this case. GA, which is similar to the evolutionary process
of nature, is used to obtain the optimized solution to a given problem. It is, therefore,
useful in solving highly complex problems in the fields of business or engineering [29–31].
In this study, the selected watersheds were divided into two groups for determination
of the seven coefficients. The first group included 11 watersheds. It consisted of the
watersheds that were given even numbers: Wsd-01, Wsd-02, Wsd-04, Wsd-06, Wsd-08,
Wsd-10, Wsd-12, Wsd-14, Wsd-16, Wsd-18, and Wsd-20, and it included the watersheds
with the minimum and maximum areas. The second watershed group consisted of the
remaining nine watersheds: Wsd-03, Wsd-05, Wsd-07, Wsd-09, Wsd-11, Wsd-13, Wsd-15,
Wsd-17, and Wsd-19. After the coefficients of Equation (2) were defined through GA
for the watersheds in the first group, Equation (2) was applied to the watersheds in the
second group, along with a definition for all the coefficients, to examine the monthly
baseflow prediction method. The processes described in Section 2.1 can be expressed as the
following Figure 2.



Water 2021, 13, 2043 7 of 18

Figure 2. Schematic flow of the study.

3. Results and Discussion
3.1. Determination of Regression Model Coefficients

Optimal values for the seven coefficients in Equation (2) for predicting the monthly
baseflow were determined by GA based on the monthly baseflow estimated for each wa-
tershed and the monthly flow that was distinguished using the Eckhardt filter equation
(Equation (1)). The coefficients for which the smallest difference between the monthly base-
flow separated using Equation (1) and the monthly baseflow estimated using Equation (2)
was observed in each watershed were determined to be optimal. In this study, it was
deemed necessary to measure the separated monthly baseflows and to develop the criteria
for examining the validity of the estimated monthly baseflow. Duda et al. [32] reported that
the estimated result is applicable when the R2 is higher than 0.65 and the difference is 45%
or less. Skaggs et al. [33] mentioned that the result is applicable when the Nash–Sutcliffe
efficiency (NSE) is higher than 0.50, and Wang et al. [34] suggested that it is applicable
when the NSE is higher than 0.50, the R2 is higher than 0.60, and the PBIAS is ±15%.
Moriasi et al. [35] deemed the result to be applicable when the R2 is higher than 0.60, NSE
is higher than 0.50, and the PBIAS is less than 15%. In other words, there are various
criteria for determining the applicability of the estimated result. The different criteria were
summarized in this study, and the applicability of the monthly baseflow was estimated
using a scatter plot with an NSE higher than 0.50 and an R2 higher than 0.60.

In terms of the optimized coefficients for the 11 watersheds in the first group, CURBN
ranged from 0.00289 (Wsd-04) to 0.06314 (Wsd-04), CAGRL from 0.10076 (Wsd-01) to 0.49061
(Wsd-06), CFRST from 0.01256 (Wsd-02) to 0.28413 (Wsd-10), CPAST from 0.0.07913 (Wsd-06)
to 0.31460 (Wsd-20), CWTLD from 0.05222 (Wsd-02) to 0.78599 (Wsd-16), CBARE from 0.03488
(Wsd-04) to 0.23603 (Wsd-16), and CWATR from 0.04919 (Wsd-04) to 0.38384 (Wsd-16)
(Table 4). The optimized coefficients in each watershed were obtained when the difference
between the separated and estimated baseflows describing baseflow was minimal. Since
the purpose of this study is to propose a method for predicting the monthly baseflow in
multiple watersheds rather than judging the accuracy of the monthly baseflow prediction
for a specific watershed, the final values of the coefficients of Equation (2) were determined
based on the average of each coefficient. The coefficients were, therefore, determined to be
0.04 for CURBN, 0.40 for CAGRL, 0.20 for CFRST, 0.18 for CPAST, 0.48 for CWTLD, 0.15 for CBARE,
and 0.22 for CWATR.
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Table 4. Optimized coefficients for the Equation (2).

Watershed CURBN CAGRL CFRST CPAST CWTLD CBARE CWATR

Wsd-01 0.02241 0.10076 0.25373 0.09274 0.52890 0.09265 0.04994
Wsd-02 0.03981 0.48080 0.01256 0.18411 0.05222 0.21955 0.24430
Wsd-04 0.06314 0.19460 0.21289 0.24017 0.70207 0.03488 0.04919
Wsd-06 0.03137 0.49061 0.27421 0.07913 0.24028 0.19144 0.14365
Wsd-08 0.02437 0.35966 0.26696 0.08260 0.17413 0.09301 0.18265
Wsd-10 0.05851 0.42420 0.28413 0.23152 0.47602 0.21825 0.31505
Wsd-12 0.06050 0.23236 0.25996 0.15333 0.67417 0.11600 0.20427
Wsd-14 0.03400 0.39035 0.14121 0.28233 0.70807 0.17528 0.29423
Wsd-16 0.00289 0.33503 0.24279 0.12178 0.78599 0.23603 0.38384
Wsd-18 0.03494 0.34299 0.15810 0.17155 0.27299 0.23278 0.20131
Wsd-20 0.04969 0.47828 0.12389 0.31460 0.61544 0.04141 0.30796

Min. 0.00289 0.10076 0.01256 0.07913 0.05222 0.03488 0.04919

Max. 0.06314 0.49061 0.28413 0.31460 0.78599 0.23603 0.38384

Mean 0.03833 0.34815 0.20277 0.17762 0.47548 0.15012 0.21603

Final value 0.04 0.40 0.20 0.18 0.48 0.15 0.22

In general, the contribution of land use to the baseflow can be considered to be related
to the impervious surface ratio. The contribution of urban areas to the baseflow will be low
because the impervious surface ratio is high. A CURBN of 0.04 was finally determined for
urban areas based on the optimized results; this reflects the conditions of impermeability,
as this coefficient is relatively lower than those obtained for other land uses. In contrast,
the contribution of wetlands and reservoirs to the baseflow is high because of the constant
infiltration of water. The value of 0.48 for CWTLD also appears to reflect this condition, as it
is relatively high as compared to the coefficients for other types of land use.

It is noteworthy that the coefficient for agricultural land, CAGRL, had the second highest
value after CWTLD. Agriculture in Korea is dominated by rice paddies, which are maintained
in pond conditions during the rice cultivation period from May to October, resulting in
a similar contribution to the baseflow as wetland. The contribution of agriculture to the
baseflow should, therefore, be similar to that of wetland; this condition is sufficiently
reflected in the coefficient for agriculture.

The monthly baseflow in the first watershed group was calculated again using
Equation (2) by applying the finally determined coefficients, and the suitability of the
monthly baseflow was determined by the values of R2, NSE, and the scatter plot. Both R2

and NSE showed applicable ranges with R2 ranging from 0.600 (Wsd-06) to 0.817 (Wsd-16)
and NSE from 0.504 (Wsd-01) to 0.677 (Wsd-18 and Wsd-20) (Table 5). Based on the scat-
ter plot, the estimated monthly baseflow tended to be slightly lower than the separated
monthly baseflow for Wsd-06, Wsd-08, and Wsd-10; Wsd-20 showed a scattered tendency
that was comparable to the other watersheds. Overall, however, there were no significant
differences in the tendencies or values obtained via prediction and the separated monthly
baseflow (Figure 3).

Table 5. R2 and NSE of separated and estimated monthly baseflow in the first watershed group.

Watershed R2 NSE

Wsd-01 0.736 0.504
Wsd-02 0.607 0.563
Wsd-04 0.634 0.507
Wsd-06 0.600 0.565
Wsd-08 0.704 0.679
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Table 5. Cont.

Watershed R2 NSE

Wsd-10 0.708 0.536
Wsd-12 0.697 0.547
Wsd-14 0.688 0.583
Wsd-16 0.817 0.623
Wsd-18 0.785 0.677
Wsd-20 0.691 0.677

In the plot of flow duration curves, the estimated monthly baseflow did not capture
the separated monthly baseflow in the dry-conditions (flow duration intervals from 60% to
90%) and the low-flow (flow duration intervals from 90% to 100%) regimes often; however,
it does in the other flow regimes, which are the high-flow (flow duration intervals from
0–10%), the moist-conditions (flow duration intervals from 10% to 40%), and the mid-range
flow (flow duration intervals from 40% to 60%) regimes (Figure 4).

Figure 3. Cont.
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Figure 3. Cont.
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Figure 3. Scatter plot of separated monthly baseflow and estimated monthly baseflow: (a) Wsd-01; (b) Wsd-02; (c) Wsd-04;
(d) Wsd-06; (e) Wsd-08; (f) Wsd-10; (g) Wsd-12; (h) Wsd-14; (i) Wsd-16; (j) Wsd-18; (k) Wsd-20.

Figure 4. Cont.
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Figure 4. Flow duration curves of separated monthly baseflow and estimated monthly baseflow in calibration: (a) Wsd-01;
(b) Wsd-02; (c) Wsd-04; (d) Wsd-06; (e) Wsd-08; (f) Wsd-10; (g) Wsd-12; (h) Wsd-14; (i) Wsd-16; (j) Wsd-18; (k) Wsd-20.

Therefore, the application of optimized coefficients to each watershed will render the
estimated monthly baseflow similar to the separated monthly baseflow. Thus, the applica-
tion of the finally determined coefficients is expected to result in satisfactory predictions.
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3.2. Validation of Regression Model Coefficients

When the model parameters that were determined for use for calibration were adjusted
for the associated watersheds during calibration, the results derived for these watersheds
could be considered satisfactory. However, it is necessary to apply these model parameters
to watersheds other than those used in the calibration process to examine whether the
model parameters were well calibrated and determine whether the estimated results
are applicable. Therefore, in this study, the values determined for the coefficients that
correspond to the model parameters in the calibration process were applied to the second
group to determine whether the estimated monthly baseflow is also applicable in this group.

The estimated monthly baseflow was determined to be applicable because the R2

ranged from 0.618 (Wsd-09) to 0.786 (Wsd-17) and the NSE from 0.567 (Wsd-07) to 0.727
(Wsd-05) (Table 6). Based on the scatter plot, the estimated monthly baseflow tended to
be slightly lower than the separated monthly baseflow for Wsd-03, Wsd-11, and Wsd-19.
Overall, however, no significant differences were observed in either tendency or value for
the estimated and separated monthly baseflow (Figure 5).

Table 6. R2 and NSE of separated and estimated monthly baseflow in the second watershed group.

Watershed R2 NSE

Wsd-03 0.630 0.569
Wsd-05 0.739 0.727
Wsd-07 0.664 0.567
Wsd-09 0.618 0.606
Wsd-11 0.658 0.647
Wsd-13 0.689 0.632
Wsd-15 0.728 0.670
Wsd-17 0.786 0.674
Wsd-19 0.626 0.571

Figure 5. Cont.
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Figure 5. Cont.
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Figure 5. Scatter plot of separated monthly baseflow and estimated monthly baseflow: (a) Wsd-03; (b) Wsd-05; (c) Wsd-07;
(d) Wsd-09; (e) Wsd-11; (f) Wsd-13; (g) Wsd-15; (h) Wsd-17; (i) Wsd-19.

Similar to the results of calibration, the estimated monthly baseflow did not capture
the separated monthly baseflow in the dry-conditions and the low-flow regimes often in
the flow duration curve plots; however, it does in the other flow regimes, which are the
high-flow, the moist-conditions, and the mid-range flow regimes (Figure 6). Based on
flow duration curves in both calibration and validations processes, the estimated monthly
baseflow fit to the separated monthly baseflow reasonably in the high-flow and the moist-
conditions; however, it did not especially in the low-flow regime. This means that the
monthly baseflow approach will be reasonable in the applications with the issues regarding
the high flow and the moist conditions such as flooding or nonpoint source pollution
analysis. However, caution needs to be exercised when the approach is used for any
applications regarding low flow such as water supply simulations in drought.

Figure 6. Cont.
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Figure 6. Flow duration curves of separated monthly baseflow and estimated monthly baseflow in validation: (a) Wsd-03;
(b) Wsd-05; (c) Wsd-07; (d) Wsd-09; (e) Wsd-11; (f) Wsd-13; (g) Wsd-15; (h) Wsd-17; (i) Wsd-19.

4. Conclusions

This study aimed to propose a method for predicting the baseflow in order to improve
the shortcomings of the current long-term hydrologic impact analysis (L-THIA) model,
which can only predict surface runoff. To achieve this aim, the measured streamflow was
separated into surface runoff and baseflow to determine whether the L-THIA model can
predict the hydrologic behavior in a given watershed through comparison with the mea-
sured flow. The model is limited in that it cannot determine the influence of the baseflow
because only the surface runoff can be estimated. It has been used until now because
it requires only land use maps, soil maps, and precipitation data and its computation
process is simple from a user point of view. Therefore, it is necessary to improve the current
L-THIA model so that it can predict the baseflow while maintaining its simplicity. As such,
a method to improve the limitations of the L-THIA model was proposed by applying the
baseflow prediction method based on land use and annual precipitation, which is used in
the spreadsheet tool for the estimation of pollutant load (STEPL) model.

To this end, 20 independent watersheds in South Korea were selected and divided into
two groups. The first group of 11 watersheds was used to propose the monthly baseflow
prediction method, and the second group of nine watersheds was used to examine the
proposed method. Since the proposed method uses monthly precipitation data along
with the areas and coefficients associated with seven different land use types, it does
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not exceed the range of data used in the current L-THIA model to predict surface runoff.
The simplicity of the model can, therefore, be maintained. In addition, the coefficients
represent the contribution of precipitation to the baseflow for each land use type. In the
case of urban areas, which are generally considered to have a low contribution to the
baseflow due to their high impervious surface ratio, the coefficient was determined to be
lower than that of other land uses. Wetland is considered to have a high contribution to
the baseflow because of the continuous infiltration that is associated with water storage.
Therefore, it has a higher coefficient than the other land use types. In addition, ponded
paddy fields, which are characteristic of the agriculture in Korea, are assumed to contribute
to the baseflow in a similar manner as wetland during the cultivation period from May to
October. Therefore, the coefficient for agricultural land was determined to be similar to the
that for wetland. In other words, it appears that the proposed monthly baseflow prediction
method can sufficiently reflect the conditions of the different land uses while reflecting
seasonal conditions as it uses monthly precipitation.

A proposed step in use of the approach is to separate direct runoff and baseflow from
measured streamflow first, to calibrate direct runoff estimated with curve numbers, and
to calibrate baseflow estimated by the suggested method, in turn. Additionally, since the
proposed method does not reflect the hydrologic behavior beneath the surface and can be
seen as a statistical or probabilistic approach based on the characteristics of the watersheds
in Korea, caution needs to be exercised when it is applied to watersheds without ponded
paddy fields. Attention also needs to be paid to the application of this monthly baseflow
prediction regression equation when the watershed area used in the derivation process
is exceeded. In addition, the suggested regression was developed on a monthly basis;
therefore, it will be limited to apply for daily or weekly baseflow estimations.
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30. Toğan, V.; Daloğlu, T.A. An improved genetic algorithm with initial population strategy and self-adaptive member grouping.
Comput. Struct. 2008, 86, 1204–1218. [CrossRef]

31. Park, Y.S.; Engel, B.A.; Harbor, J. A web-based model to estimate the impact of best management practices. Water 2014, 6, 455–471.
[CrossRef]

32. Duda, P.B.; Hummel, P.R.; Donigian, A.S.; Imhoff, J.C. BASINS/HSPF: Model use, calibration, and validation. Trans. ASABE 2012,
55, 1523–1547. [CrossRef]

33. Skaggs, R.W.; Youssef, M.A.; Chescheir, G.M. DRAINMOD: Model use, calibration, and validation. Trans. ASABE 2012, 55,
1509–1522. [CrossRef]

34. Wang, X.; Williams, J.; Gassman, P.; Baffaut, C.; Izaurralde, R.; Jeong, J.; Kiniry, J. EPIC and APEX: Model use, calibration, and
validation. Trans. ASABE 2012, 55, 1447–1462. [CrossRef]

35. Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation
criteria. Am. Soc. Agric. Biol. Eng. 2015, 58, 1763–1785. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2019.136449
http://www.ncbi.nlm.nih.gov/pubmed/32050376
http://doi.org/10.1080/01944369408975555
http://doi.org/10.1007/s002670010122
http://www.ncbi.nlm.nih.gov/pubmed/11029115
http://doi.org/10.1007/s00267-010-9482-6
http://doi.org/10.1016/j.scitotenv.2014.12.077
http://www.ncbi.nlm.nih.gov/pubmed/25553544
http://doi.org/10.5539/ep.v1n2p1
http://doi.org/10.1016/j.jenvman.2017.12.068
http://www.ncbi.nlm.nih.gov/pubmed/29316470
http://doi.org/10.3390/su11133535
http://npslab.kongju.ac.kr/models/LTHIA2013_Manual.pdf
http://doi.org/10.1111/j.1752-1688.1999.tb03599.x
http://doi.org/10.1016/j.jhydrol.2012.10.002
http://doi.org/10.3390/w8040153
https://egis.me.go.kr/main.do
https://www.weather.go.kr/w/index.do
http://water.nier.go.kr/main/mainContent.do
http://doi.org/10.1002/hyp.5675
http://doi.org/10.1016/j.cageo.2010.01.004
http://doi.org/10.1016/j.compstruc.2007.11.006
http://doi.org/10.3390/w6030455
http://doi.org/10.13031/2013.42261
http://doi.org/10.13031/2013.42259
http://doi.org/10.13031/2013.42253
http://doi.org/10.13031/trans.58.10715

	Introduction 
	Materials and Methods 
	Decription of the Study Area 
	Baseflow Separation 
	Monthly Baseflow Estimation Approach 

	Results and Discussion 
	Determination of Regression Model Coefficients 
	Validation of Regression Model Coefficients 

	Conclusions 
	References

