
sustainability

Article

Assessment of the Impacts of Land Use/Cover Change
and Rainfall Change on Surface Runoff in China

Fazhi Li 1 , Jingqiu Chen 2 , Yaoze Liu 3, Peng Xu 4, Hua Sun 1,*, Bernard A. Engel 2,* and
Shizhong Wang 5

1 College of Public Administration, Nanjing Agricultural University, Nanjing 210095, China
2 Department of Agricultural and Biological Engineering, Purdue University, IN 47907, USA
3 Department of Environmental and Sustainable Engineering, University at Albany, NY 12222, USA
4 Meteorological service center of Henan province, Zhengzhou 450003, China
5 Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology,

Sun Yat-sen University, Guangzhou 510275, China
* Correspondence: sh@njau.edu.cn (H.S.); engelb@purdue.edu (B.A.E.);

Tel.: +86-137-7067-6369 (H.S.); +1-765-494-8362 (B.A.E.)

Received: 13 June 2019; Accepted: 25 June 2019; Published: 27 June 2019
����������
�������

Abstract: Assessment of the impacts of land use/cover change (LUCC) and rainfall change on surface
runoff depth can help provide an understanding of the temporal trend of variation of surface runoff

and assist in urban construction planning. This study evaluated the impacts of LUCC and rainfall
change on surface runoff depth by adopting the well-known Soil Conservation Service-Curve Number
(SCS-CN) method and the widely used Long-Term Hydrologic Impact Assessment (L-THIA) model.
National hydrologic soil group map of China was generated based on a conversion from soil texture
classification system. The CN values were adjusted based on the land use/cover types and soil
properties in China. The L-THIA model was configured by using the adjusted CN values and then
applied nationally in China. Results show that nationwide rainfall changes and LUCC from 2005 to
2010 had little impact on the distribution of surface runoff, and the high values of runoff depth were
mainly located in the middle and lower reaches of the Yangtze River. Nationally, the average annual
runoff depths in 2005, 2010 and 2015 were 78 mm, 83 mm and 90 mm, respectively. For the 2015 land
use data, rainfall change caused the variation of surface runoff depth ranging from −203 mm to
476 mm in different regions. LUCC from 2005 to 2015 did not cause obvious change of surface runoff

depth, but expansion of developed land led to runoff depth increases ranging from 0 mm to 570 mm
and 0 mm to 742 mm from 2005 to 2010 and 2010 to 2015, respectively. Potential solutions to urban
land use change and surface runoff control were also analyzed.
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1. Introduction

Urbanization in China has attracted wide international attention in recent years [1].
Urbanization typically refers to the processes in which large amounts of agricultural or other non-urban
land are transformed into developed land (including the low density developed land in rural areas
as well as medium and high density developed land in urban areas) for the development of society,
and the land use/cover types are changed significantly [2,3]. An increase in developed land usually
means growth of impervious surface area, which is regarded as the direct cause of urban surface
runoff [4–6]. Urban flooding occurred on average in 185 cities per year from 2010 to 2016 in China;
especially, in 2016, a total of 192 cities above the county level suffered floods, which caused direct
economic losses amounting to 548.49 billion dollars [7]. In addition, due to the increase of impermeable
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surfaces, surface pollutants enter water bodies with surface runoff, which increases the risk of non-point
source pollution and leads to water quality degradation [8–11]. Apart from the increased impervious
surface area, another main cause of urban flooding is rainfall change. Research shows that precipitation
in the eastern part of China presents a large increase, while a large decrease occurred in the central
region and a small increase occurred in the west from 1961 to 2010 [12].

The identification of spatial distribution and variation characteristics of surface runoff is of
great practical significance for surface runoff management. Assessment of the impacts of land
use/cover change (LUCC) and rainfall change on surface runoff has received increased attention
in recent years [13–20]. Numerous studies assessing the effect of land use change, climate change,
and urbanization expansion on surface runoff have been carried out worldwide with computer models
such as Soil and Water Assessment Tool (SWAT), MIKE System Hydrological European (MIKE-SHE),
Hydrological Land Use Change (HYLUC), Long-Term Hydrology Impact Assessment (L-THIA),
and Storm Water Management Model (SWMM)) [17,21–31]. Among these, the L-THIA model [32] is
easy to use and is a Soil Conservation Service-Curve Number (SCS-CN)-based [33] model; it relies
on readily available data and performs well in the simulation of hydrology both on macroscopic and
microscopic scales [34–39]. For example, Bhaduri et al. [35] assessed the impact of land use change
and climate change on surface runoff volume with the L-THIA model in a small watershed located
in Indiana, U.S., and concluded that an 18% increase in urban or impervious areas could lead to an
estimated 80% increase in annual average runoff volume between 1973 and 1991. Chen et al. [30]
quantified the urbanization impacts on surface runoff of the contiguous United States from 2001 to
2011 by developing a tabular version of L-THIA model, which was designed to expedite calculations
over diverse geographical areas, and concluded that urban expansion and intensification were driving
forces for surface runoff change and urbanization from 2001 to 2011 contributed 10% increase in average
annual runoff volume nationally. Chen et al. [38] simulated the average annual surface runoff depths
of the Great Lakes Region, USA, from 2001 to 2011, and identified the areas that had high increased
annual runoff depths. Li et al. [39] used the L-THIA-LID model to evaluate the implementation impacts
of green infrastructure on surface runoff in a small watershed in Michigan, U.S., and concluded that
surface runoff volume could be reduced by 68% at most through implementing green infrastructure.

CN-based models are not widely used in China currently because the land use type and soil texture
type classification systems in China differ from those in the U.S. Some Chinese researchers have made
attempts to use the CN method to assess surface runoff through calibrating the CN values [14–16,40,41],
but research areas were almost always small watersheds or single cities, and research methods are
often based on complicated models. No research to date was found to use the L-THIA model to assess
the impacts of LUCC and rainfall change on surface runoff depth at a national scale in China.

Assessment of the impacts of LUCC and rainfall change on surface runoff depth at a macroscopic
level can help understanding the spatial-temporal distribution and variation of surface runoff depth
in China, and help land use planning and urban flood management. In this study, hydrological soil
group map of China was firstly built based on the reclassified soil texture types; the CN values of
each land use type in China were defined and adjusted to serve as input data of L-THIA model.
The impacts of LUCC and rainfall change on surface runoff depth from 2005 to 2015 were then evaluated.
Additionally, the impacts of isolated LUCC and isolated rainfall change on surface runoff depth were
also evaluated.

2. Materials and Methods

2.1. Input Data

Land use/cover datasets with a spatial resolution of 300 m in 2005, 2010, and 2015 were based
on the research output of the European Space Agency (ESA) Climate Change Initiative (CCI) – Land
Cover project. Soil mechanical properties data sets with an spatial resolution of 1000 meters (including
the data set classified based on the percentages of sand, silt, and clay in the soil) and the geo-political
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database provided by the Data Center for Resources and Environmental Sciences, Chinese Academy
of Sciences (REDC). Daily rainfall data from 2003 to 2017 were provided by the National Centers for
Environmental Information, of which 635 equally distributed rainfall monitoring sites nationwide
with persistent rainfall records out of 2427 rainfall monitoring sites were chosen as the input data.
Daily discharge data of the selected watersheds in 2016 were provided by 25 hydrologic stations.
Figure 1 shows the distribution of rainfall monitoring stations and average annual rainfall depths
from 2003 to 2017, and percentage developed of each city in 2015. Rainfall data of the 635 stations
represents the rainfall distribution across the country, with more rainfall concentrated in the south,
while the west and north generally receive limited rainfall. Distribution of the developed land in China
is considerably unbalanced and is mainly located in the eastern coastal areas and northeast China,
while developed land area in the central and western regions is relatively small.
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Figure 1. Average annual rainfall depths from 2003 to 2017 (left) and percentage developed in each
city in 2015 (right).

2.2. Research Methods

2.2.1. Generation of Hydrologic Soil Group Map

Hydrologic soil group (HSG) classification in the USA is based on the infiltration rate, which is
controlled by the soil profile [33]. Technical Release 55 (TR-55) of urban hydrology for small watersheds
presents the hydrologic soil group type according to the surface soil texture [33]. Of which, the sand,
loamy sand, and sandy loam belongs to type A of HSG, the silt loam and loam belongs to type B of
HSG, the sandy clay loam belongs to type C of HSG, and the clay loam, silty clay loam, sandy clay,
silty clay, and clay belongs to type D of HSG.

The soil texture classification system was developed by the United States Department of Agriculture
(USDA) with the texture triangle diagram (Figure 2). Three legs of the equilateral triangle represent the
percentages of the weights of clay (with equivalent grain size less than 0.002 mm), silt (with equivalent
grain size range from 0.002 mm to 0.05 mm), and sand (with equivalent grain size range from 0.05 mm
to 2 mm) [42]. One difference between the Chinese and USA soil mechanical systems is the equivalent
grain size of sand, which is from 2 mm to 0.05 mm in the USA, while it is 1 mm to 0.05 mm in China
(Table 1). This could decrease the accuracy of the definition of soil texture types when the textural
classes were reclassified according to USA soil mechanical analysis systems using the Chinese soil
mechanical data sets. However, the classification of soil texture depends on the dominant type of
soil particles (Figure 2). Considering the soil particle size range of silt and clay are the same both in
the Chinese and USA soil mechanical analysis systems, the different particle size range of sand was
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considered acceptable. Therefore, the soil mechanical data sets were first converted to vector data sets,
and then overlay analysis tools and data selection tools in ArcGIS software were used to obtain the soil
texture map according to the triangular diagram. Then, the hydrologic soil group map was generated
according to Technical Release 55 (Figure 3).
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Table 1. Typical soil mechanical properties in the USA and China [43].

Conventional Names
Equivalent Grain Size (Diameter) (mm)

Soil Mechanical in the USA Soil Mechanical in China

Gravel 3–2 3–1
Sand 2–0.05 1–0.05
Silt 0.05–0.002 0.05–0.002

Clay Less than 0.002 Less than 0.002

2.2.2. ArcL-THIA10.1 Tool

The ArcL-THIA10.1 tool (Purdue University, West Lafayette, US) is a toolbox that can be used
in ArcGIS version 10.1 (Environmental Systems Research Institute, Redlands, US). It was developed
for the L-THIA model using Python programming language [32]. The basic principle of this model is
to use the SCS-CN method to calculate runoff depth based on land use data, hydrologic soil group
and daily precipitation data [44–46]. The SCS model assumes the ratio of actual retention after runoff

begins (F) to actual runoff (Q) in a catchment equals the ratio of potential maximum retention after
runoff begins (S) to potential maximum runoff (Qm), which means:

F
Q

=
S

Qm
(1)

Qm = P− Ia, F = P− Ia −Q (2)

Q =
(P− Ia)

2

(P− Ia) + S
(3)

where F is actual retention after runoff begins (mm), Q is actual runoff depth (mm), S is potential
maximum retention after runoff begins which depends on the CN value, Qm is potential maximum
runoff depth (mm), P is rainfall depth (mm), and Ia is initial abstraction [33]. Ia equals to 0.2S in the
L-THIA model (Following the formulation of the SCS model), which means:

Q =
(P− 0.2S)2

0.8S + P
(Q = 0 for P ≤ 0.2S) (4)

S =
25400
CN

− 254 (5)

The ArcL-THIA10.1 tool contains four main components. The first component is used for
generating the “CN map” through overlaying land use data, hydrologic soil group data, and the
CN-value table (Table 2). Each cell is created with a CN value according to the combination of land
use type and hydrologic soil group. Hydrology runoff unit codes are also generated for each cell that
receives the same attributes. The second component is used for generating the “rainfall allocation
map” according to the coordinates of rainfall monitoring sites and the research area using the Thiessen
polygon method, which determines the rainfall depth of each cell. The third component is used for
generating the “CN map for Multi-Rainfall data”, based on the “CN map” and the “rainfall allocation
map”, each hydrology runoff unit is defined with a rainfall monitoring site code for calculating the
runoff depth. The fourth component is used for calculating the surface runoff volume in each hydrology
unit with the CN value, daily rainfall depth and area of each cell.

Pixels with same attributes were assigned as one hydrology unit in this tool, thus it is incapable
of calculating the runoff volumes of each assessment unit (an administrative division level in China,
which were called cities in this study for simplicity). To solve this problem, a numbering system was
used. Assessment units were first numbered from 1 to 345 (there were 345 cities in total), and each cell
was multiplied by 10,000,000 to obtain an eight-digit to ten-digit value, with format of “A0000000”,
where A is the code of each city. Then, the land use data were rebuilt by overlaying the city data sets
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and the land use data to obtain new land use type values with a format of “A00000DD”, where DD
is the initial land use type value. The CN value of each “new land use/cover type” was also defined
according to initial land use types. The format of each hydrology runoff unit code in the “CN map”
would then become “ABBBCCDD” (BBB is the code of rainfall monitoring sites and CC is the HSG
code), which makes it possible to calculate the runoff volume in each city and each province through
extracting the city codes. Figure 4 shows the detailed data processing steps and the principle of the
L-THIA model [47].
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2.2.3. CN Value Definition

The combination of land use/cover type and HSG was defined with a CN value in L-THIA
model, but the land use/cover types are based on the US land use/cover type classification system [48].
However, the typology of land cover dataset in this study was defined using the Land Cover
Classification System (LUCCS) developed by the United Nations (UN) Food and Agriculture
Organization (FAO) [49]. Influenced by the spatial resolution of the dataset, some land use types were
mixed types, percentage of each land use type in each pixel was described in detail in the product user
guide [50]. CN values of pure land use types (single land use type in each pixel) were defined as the
same as the US land use/cover types. CN values of mixed land use types were defined by the weighted
values (Table 2).

Perennial ice/snow is mainly located in the northwest areas with high altitude, low temperature,
relatively small rainfall depth, and small area (0.7% of the total area). Surface runoff generation process
of perennial ice/snow is different from other land use types and the relative research regarding this topic
is rare. Therefore, surface runoff generated from perennial ice/snow was not included in this study
and CN value of perennial ice/snow was then defined as zero. In addition, this study is to evaluate
surface runoff from the ground, and the observed surface runoff volumes used for model calibration
and validation were also estimated surface runoff from the ground by applying the Baseflow Filter
Program (BFLOW) [51]. Therefore, CN value of water surface was also defined as zero in this study.
Detailed CN-value calculation rules are listed in Table 2. The initial values of each land use type (two to
three digits values) were reclassified using 01 to 37 to meet the model requirements (two-digit values).
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Table 2. Initial definition method of CN values based on the initial land use dataset.

Reclassified Values of
Land Use Types

Initial Values of Initial
Land Use Dataset

Calculate Methods of CN
Values

Reclassified Values of
Land Use Types

Initial Values of Initial
Land Use Dataset

Calculate Methods of
CN Values

1 10 CNcul. 20 120 CNFor.
2 11 (CNcul. + CNGra.)/2 21 121 CNFor.
3 12 (CNcul. + CNFor.)/2 22 122 CNFor.
4 20 CNcul. 23 130 CNGra.
5 30 0.75×CNCul. + 0.25×CNFor. 24 140 CNLic.
6 40 0.25×CNCul. + 0.75×CNFor. 25 150 0.1×CNFor. + 0.9×CNBar.
7 50 0.9×CNFor. + 0.1×CNGra. 26 151 0.1×CNFor. + 0.9×CNBar.
8 60 0.9×CNFor. + 0.1×CNGra. 27 152 0.1×CNFor. + 0.9×CNBar.
9 61 0.7×CNCul. + 0.3×CNGra. 28 153 0.1×CNGra. + 0.9×CNBar.

10 62 0.3×CNFor. + 0.7×CNGra. 29 160 CNWet.
11 70 0.9×CNFor. + 0.1×CNGra. 30 170 CNWet.
12 71 0.7×CNCul. + 0.3×CNGra. 31 180 CNWet.
13 72 0.3×CNFor. + 0.7×CNGra. 32 190 CNBar.
14 80 0.9×CNFor. + 0.1×CNGra. 33 200 CNBar.
15 81 0.7×CNCul. + 0.3×CNGra. 34 201 CNBar.
16 82 0.3×CNFor. + 0.7×CNGra. 35 202 CNUnc.
17 90 CNFor. 36 210 CNWat.
18 100 0.75×CNCul. + 0.25×CNFor. 37 220 CNPer.
19 110 0.25×CNCul. + 0.75×CNFor.

Note: 1 CNCul. is the CN value of cultivated land, CNGra. is the CN value of grassland, CNFor. is the CN value of forest, CNBar. is the CN value of barren land, CNWet. is the CN value of
wetland, CNUnc. is the CN value of unconsolidated shore and CNPer. is the CN value of perennial ice/snow.
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2.2.4. Model Calibration and Validation

Small changes in CN values of each land cover type may cause large change in simulation
results [45,52]. Calculation of CN values based on simple relationships between two kinds of land
use/cover remotely sensed data classification systems may cause errors. In addition, in a country
featuring a huge variation of characteristics, CN values of same kinds of land use/cover types may
differ greatly in different areas. Therefore, 25 randomly distributed watersheds throughout the country
were selected for model calibration (18 watersheds) and validation (7 watersheds) (Figure 5).
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(1) Model Calibration

First, observed surface runoff volumes of the selected watersheds in 2016 were estimated from
daily discharge data by applying the Baseflow Filter Program (BFLOW) [51]. Second, surface runoff

volumes of 18 watersheds in 2016 were simulated with the initial L-THIA model. CN values of each
watershed were adjusted by 1% each time until the simulated values matched the observed values well,
and an adjustment parameter was identified for each watershed (Table 3). Considering that CN values
of impervious surface equal to 98 [53–55] and the CN values of natural land surface were not bigger
than that of impervious surfaces, any CN values greater than 98 after the adjustment were defined
to be 98. The R2 and NSE (Nash–Sutcliffe efficiency coefficient [56]) were calculated as 0.95 and 0.94,
respectively, after model calibration.
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Table 3. Surface runoff volumes of the study watersheds.

Calibration or
Validation

Hydrologic
Station

Longitude
(◦)

Latitude
(◦)

Watershed
Area (km2)

Observed Runoff
Volume (1 × 108 m3)

Simulated Runoff
Volume (1 × 108 m3)

Adjustment Parameters
of CN Values

Time
(Month)

Calibration
(R2 = 0.95, NSE = 0.94)

Guchengzi 124.260 48.533 25,485 6.98 7.01 0.88 1–12
Changjiangtun 129.592 45.990 35,465 32.00 33.15 0.97 1–12

Linghai 121.367 41.183 22,286 0.57 0.71 0.70 5– 9
Yanchi 115.883 40.033 52,094 0.19 0.27 0.36 6– 9
Jingcun 108.137 35.013 40,333 2.34 3.20 0.47 1–12
Geermu 94.780 36.307 20,042 1.66 1.91 0.47 6– 9

Chaoyang 101.760 36.657 38,205 7.04 7.13 0.57 1–12
Feilaixia 113.236 23.786 36,899 76.80 76.05 1.08 1–12

Wujingdu 106.787 27.314 24,643 55.10 55.08 1.11 1–12
Geputan 113.717 30.938 8730 13.40 13.22 1.11 1–12

Xiaolongtan 103.186 23.814 187,867 9.17 9.53 0.82 1–12
Jiajiang 103.543 29.753 12,540 31.67 32.87 1.15 1–12
Tangjia 91.793 29.899 20,046 19.04 19.03 0.95 5–10
Lijiadu 116.161 28.215 15,855 50.32 50.67 1.16 1–12

Yangkou 117.918 26.796 12,521 76.19 51.74 1.16 1–12
Dashankou 85.734 42.251 18,568 9.03 8.65 1.06 6–9
Heishiguan 112.931 34.719 18,579 6.03 6 0.65 1–12

Validation
(R2 = 0.96, NSE = 0.93)

Kafuqihai 82.484 43.422 19,067 29.80 37.78 0.99 5–8
Chenming 129.483 46.973 20,272 12.31 9.97 0.92 4–11

Yitang 111.833 37.001 23,876 2.15 1.53 0.45 6–9
Ganzi 99.967 31.619 33,720 0.44 0.09 0.76 1–3

Shimen 111.384 29.588 15,584 38.53 40.02 1.11 1–12
Lanxi 119.468 29.218 12,789 30.26 27.13 1.08 1–12

Gengzhang 94.152 29.746 15,030 9.84 6.89 0.93 5–10
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The 18 watersheds were transformed into feature points to obtain geometric centers with CN-value
adjustment parameters. The ordinary Kriging interpolation method was used to obtain adjustment
parameters nationally, and CN-value adjustment parameters of each city were calculated by averaging
parameter values within a city (Figure 6) [57]. CN values of each land use type in each watershed were
then calculated by multiply the averaged adjustment parameters and the initial values. CN values
greater than 98 after the adjustment were defined to be 98.
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(2) Model Validation

Similarly, the averaged adjustment parameters of CN values of 7 validation watersheds were
calculated by applying the averaged adjustment parameters within each of the watershed (Table 3).
CN values of each land use type in each watershed were then calculated by multiply the adjustment
parameters by the initial values. Then, surface runoff volumes of the 7 watersheds in 2016 were
simulated with the calibrated L-THIA model for validation. R2 and NSE were calculated as 0.96 and 0.93,
respectively. Values of R2

≥0.6 and NSE ≥0.5 are regarded as indicating good model performance [55].
Therefore, the model in this study after calibration was regarded as performing well.

2.2.5. Scenario Simulation and Assessment of LUCC and Rainfall Change on Surface Runoff

Three scenarios were modeled to study the impacts of LUCC and rainfall change on surface runoff.
Being the major variables, configurations of LUCC and rainfall data in each scenario were as follows
(Table 4).

(1) S1: Assessment of the responses of surface runoff depth to LUCC and rainfall change

Study of the impacts of LUCC and rainfall change on surface runoff depth is the initial motivation
of this study. Average annual surface runoff volume of 2005, 2010 and 2015 were assessed with the
land use data and rainfall data. Five-year interval rainfall data were used to reflect the variation trend
of rainfall in 15 years from 2003 to 2017. Then, the average surface runoff depth of each city could be
calculated with the following formula:

ARDcity = (TARVcity/Acity) × 1000 (6)
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ARDcity (mm) is the annual runoff depth of each city, TARVcity (m3) is total annual runoff volume
of each city, and Acity (m2) is the area of each city.

Annual runoff depths of each city in 2005, 2010 and 2015 were calculated to analyze the
spatial-temporal change of surface runoff in China. Annual runoff depth change of each city from
2005 to 2010, and 2010 to 2015 were also calculated to analyze the change tendency in the last 10 years.

(2) S2: Simulation and assessment of the responses of surface runoff depth to rainfall change

Rainfall change occurs with strong randomness, and thus comparison between a single year’s
rainfall data cannot reflect rainfall change tendency. Annual surface runoff volumes of each city were
first simulated with rainfall data from 2003 to 2017 and land use data of 2015. Then, the average values
of annual runoff volumes in the first five years (2003–07), the second five years (2008–12) and the third
five years (2013–17) were calculated separately. Increased annual runoff depths from 2005 to 2010 and
2010 to 2015 of each city were calculated for analyzing the impact of rainfall change on surface runoff.

(3) S3: Simulation and assessment of the responses of surface runoff depth to developed land expansion

One of the primary characteristics of urbanization is the increases in developed land area [58,59].
Transformation from grass land, woodland, and other natural land to developed land changes the physical
characteristics of the surface greatly. Large areas of natural surface were changed into impervious surface,
which adds to surface impermeability, and even the water permeability of green infrastructure land in
urban areas decreases due to construction activities [60]. Influenced by human activities, land use/cover
types changed greatly in recent decades [61,62]. Based on the land use dataset in this study, 54,072 km2

(0.57% of the total area of China) of natural land were transformed into developed land from 2005 to
2015 nationally. To understand the impact of human construction activities on surface runoff, the annual
runoff depth of the changed land before and after the transformation were simulated.

Table 4. Configuration of LUCC and rainfall data in each scenario.

Scenarios Input Data Purpose

S1

(1) LUCC data of 2005, rainfall data 2003–07 (average value of
annual surface runoff volumes 2003–07 was used);
(2) LUCC data of 2010, rainfall data 2008–12 (average value of
annual surface runoff volumes 2008–12 was used);
(3) LUCC data of 2015, rainfall data 2013–17 (average value of
annual surface runoff volume 2013–17 was used);

To assess the responses of
surface runoff depth to

LUCC and rainfall change.

S2

(1) LUCC data of 2015, rainfall data 2003–07 (average value of
annual surface runoff volumes 2003–07 was used);
(2) LUCC data of 2015, rainfall data 2008–12 (average value of
annual surface runoff volumes 2008–12 was used);
(3) LUCC data of 2015, rainfall data 2013–17 (average value of
annual surface runoff volume 2013–17 was used);

To assess the impacts of
rainfall change on surface

runoff depth.

S3

(1) The increased developed land 2005–10, rainfall data of 2017;
(2) The increased developed land 2010–15, rainfall data of 2017;
(3) The initial land types of 2005 that transformed into
developed land in 2010, rainfall data of 2017;
(4) The initial land types of 2010 that transformed into
developed land in 2015, rainfall data of 2017;

To assess the impacts of
developed land expansion

on surface runoff depth.

3. Results and Discussion

3.1. Scenario Simulation Results

(1) S1: Assessment results of the response of surface runoff depth to LUCC and rainfall change

Figure 7 shows the change tendency of annual surface runoff depth in each city from 2005 to
2015 with LUCC and rainfall change. Influenced by the LUCC and rainfall change in the last 15 years,
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the surface runoff did not show obvious geographical changes. Generally, high values of runoff depths
were located in the middle and lower reaches of the Yangtze River, low values of runoff depths were
located in the Yellow River basin and southwest China, and the middle values of runoff depths were
located in northwest, northeast and the south coast of China. However, the average annual runoff

depth increased nationally with values of 78 mm, 83 mm and 90 mm in 2005, 2010 and 2015 respectively.
For example (Figure 8a), in 2005, 110 cities had increased annual runoff depths greater than 100 mm,
but this increased to 114 cities and 120 cities in 2010 and 2015, respectively. Fifteen cities had increased
annual runoff depths greater than 600 mm in 2005, with an increase to 24 cities and 26 cities in
2010 and 2015.
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Figure 7 also shows the annual runoff depth change values from 2005 to 2010 and 2010 to 2015.
Just like the distribution of annual runoff depths by geography, high values of annual runoff depth
change were mainly located in the middle and lower reaches of the Yangtze River. Some cities located
in northwest China and the upper reaches of the Yellow River also had high vales from 2005 to 2010.
Some cities located in northeast China had high values from 2010 to 2015. Based on the statistical
results in Figure 8b, there were 219 cities that had increased annual runoff depths, of which 16 cities
had values greater than 100 mm in the first period. In the second period, there were 234 cities that had
increased annual runoff depths, of which 14 cities had values greater than 100 mm.

(2) S2: Response of surface runoff depth to rainfall change

Figure 9 shows that when the land use data are fixed, different rainfall data can cause large changes
in surface runoff depth. From 2005 to 2010, annual runoff depth change could be as large as 331 mm,
while this value was up to 476 mm from 2010 to 2015. As the statistics show (Figure 10a), in the first
period, there were 45 cities which had increased annual runoff depths greater than 50 mm, and 17 cities
which had decreased annual runoff depths greater than 50 mm. In the second period, city counts with
increased and decreased annual runoff depths greater than 50 mm were 38 and 12, respectively.
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Compared with the simulation results of the response of surface runoff depth to LUCC and
rainfall change (Figure 8b), we found that the LUCC may or may not be the variate, as the simulation
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results did not show much difference. To quantify the difference, subtraction was applied with the
annual runoff depth change values of each city in the two periods with LUCC being the variate minus
the ones with LUCC not being the variate (Figure 10b). Results show that when LUCC was one of
the variates to simulate surface runoff depth, the annual runoff depth change values would increase
by −10 mm to 6.4 mm from 2005 to 2010, of which 315 cities would increase by −2 mm to 2.0 mm.
Correspondingly, the annual runoff depth change value would increase by −1.9 mm to 9.7 mm from
2010 to 2015, and 316 cites would increase by −1.9 mm to 2.0 mm. Nationally, with the LUCC being
the variate, the average annual runoff depth change value increased by 0.47 mm and 0.57 mm in two
periods. Based on this analysis, LUCC had less impact on surface runoff change than rainfall change.

Although the influence of LUCC on surface runoff change was small, land use types with different
soil characteristics greatly influence surface runoff. For example, the annual rainfall depths of the
northwest and northeast China were small (Figure 1), but the average annual runoff depths and the
annual runoff depth change values in the two periods were relatively high (Figure 9).

(3) S3: Response of surface runoff depth to developed land expansion

China is experiencing rapid urbanization in recent decades [58]. Based on the dataset in this
study, the total developed land area increased by 26,552.7 km2 and 27,519.1km2 from 2005 to 2010 and
2010 to 2015, respectively. However, the increased developed land was mainly located in eastern
China, especially the lower reaches of the Yellow River and Yangtze River (Figure 11). Some cities even
had decreased developed land area (every city experienced developed land change, only increased
developed land were used for surface runoff simulation in this study). Human construction activities
changed the characteristics of the natural land, but the impact on surface runoff differed geographically
(Figure 11). Results show the influence of rainfall, characteristics of the soil, and developed land
expansion of the middle and lower reaches of the Yangtze River caused great change of annual runoff

depth, followed by the northeast and northwest China. On the contrary, developed land expansion of
other parts did not cause obvious annual runoff depth change.Sustainability 2019, 11, x FOR PEER REVIEW 15 of 20 
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Developed land expansion of the two periods also impacted annual runoff depth change values
(Figure 12). Nationally, developed land expansion from 2005 to 2010 and 2010 to 2015 caused
annual average runoff depth increases by 88 mm and 96 mm compared with the initial natural land.
Specially, there were 93 and 99 cities in these two periods that had increased runoff depths greater than
100 mm, and 33 and 37 cities had increased annual runoff depths greater than 300 mm. In addition,
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the maximum values of the increased annual runoff depth also differed; the one for the first period was
570 mm and the one of the second period was 742 mm.
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3.2. Thoughts About Urban Land Use and Surface Runoff Control with Urbanization

Rainfall change and LUCC have different effects on surface runoff. In comparison,
the spatial-temporal change of rainfall has a greater impact on regional average surface runoff,
while the impact of LUCC on regional surface runoff is relatively small. However, on the micro
scale, developed land expansion can greatly change the original surface characteristics and runoff,
thus affecting the ecological environment and human activities. Therefore, control and management
of surface runoff have become a major problem for urban land expansion. Surface runoff control
and management concepts such as low-impact development practices, sponge city construction,
and eco-city construction are widely used in urban areas [63,64]. Based on the results of this study,
several suggestions about urban flood management were proposed: (1) Concepts of flood management
in different areas should be different. Areas with less rainfall and that do not generate significant
surface runoff should focus on rainwater collection and reuse [65], while areas with more rainfall
that easily generate surface runoff should pay more attention to the rapid collection and discharge of
rainwater. Areas with less rainwater and that easily generate surface runoff should focus on the rapid
collection of rainwater and the reuse of rainwater simultaneously. (2) Multiple flood management
objectives should be encouraged [66]. Objectives to reuse or collect rainwater in single rain events
should be different in areas with great variability in rainfall. Additionally, areas with similar rainfall
but different hydrologic soil group types should also be various in objectives. (3) Practices to treat
urban floods should be different. Practices addressing urban floods have different impacts on water
collection, retention and infiltration. Practice selection should be based on the flood management
objectives [65,67]. (4) Integration of multiple planning approaches is needed, such as land use planning,
urban construction planning, and flood management planning [68]. Linkage of multiple planning
efforts can reduce redundant construction, avoid conflicting planning objectives, and achieve effective
land use and flood management.
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4. Conclusions

China is experiencing rapid urbanization and developed land expansion, which are important
driving forces changing surface runoff. The SCS-CN method and L-THIA model were used to assess the
impact of LUCC and rainfall change on surface runoff depth from 2005 to 2015 in China. Conclusions are
as follows: (1) Distribution of annual runoff depth by geographic region from 2005 to 2015 did not
show obvious changes, with high values mainly located in the middle and lower reaches of the Yangtze
River. However, the average runoff depths nationwide in 2005, 2010 and 2015 increased from 78 mm
to 83 mm to 90 mm. (2) Changes of annual runoff depth nationally were mainly caused by rainfall
change within the research period of the study, and LUCC played a relatively less important role
in annual runoff depth change. Generally, with the rainfall data of 2017 fixed, LUCC from 2005 to
2010 and 2010 to 2015 caused changes in annual runoff depths by 0.47 mm and 0.57 mm, respectively.
(3) Nationally, developed land expansion in different regions from 2005 to 2010 and 2010 to 2015 led to
annual runoff depth change ranging from 0 mm to 570 mm and 0 mm to 742 mm, respectively. (4)
Urban flood management concept, objectives and practices were encouraged to be different to treat
urban surface runoff in different regions. Integration of multiple planning was also needed to treat the
contradiction of LUCC and surface runoff change.

This study also demonstrated an approach to reclassifying soil texture and adjusting the CN
values based on adjustment parameters nationally to accomplish the application of the L-THIA model
in China. CN adjustment was based on average values of cities, while the locations of cities varies
greatly, which limited the accuracy of simulation results. Further study could be focused on improving
the CN value with higher resolution of adjustment units. In addition, the HSG dataset is also an
important input data which influences the CN values greatly; more study can also focus on using higher
resolution of soil dataset. Short-term rainfall data in this study could not represent long-term climate
variability, so a stochastic weather generator could be used to obtain continuous long-term rainfall
time series data to study the impact of long-term climate variability on surface runoff. Future land use
change scenarios and their hydrological and environmental impacts could also be carried out, based
on simulated land use data and rainfall data.
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