Next Article in Journal
Spatial-Temporal Change of Land Use and Its Impact on Water Quality of East-Liao River Basin from 2000 to 2020
Next Article in Special Issue
Reclaimed Water for Vineyard Irrigation in a Mediterranean Context: Life Cycle Environmental Impacts, Life Cycle Costs, and Eco-Efficiency
Previous Article in Journal
Advances in Mountain and Mediterranean Wetlands Conservation
Previous Article in Special Issue
Estimating Surface and Groundwater Irrigation Potential under Different Conservation Agricultural Practices and Irrigation Systems in the Ethiopian Highlands
Article

LCA-Based Environmental Performance of Olive Cultivation in Northwestern Greece: From Rainfed to Irrigated through Conventional and Smart Crop Management Practices

1
Laboratory of Pomology, School of Agricultural Sciences, University of Thessaly, Fitoko Str., 38446 Volos, Greece
2
Department of Agriculture, University of Ioannina, Kostakii Campus, 47100 Arta, Greece
3
International Center for Advanced Mediterranean Agronomic Studies (CIHEAM-Bari), Via Ceglie 9, Valenzano, 70010 Bari, Apulia, Italy
4
Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
5
Department of Agriculture, University of Patras, Theodoropoulou Terma, 27200 Amaliada, Greece
*
Authors to whom correspondence should be addressed.
Academic Editor: Teresa Afonso do Paço
Water 2021, 13(14), 1954; https://doi.org/10.3390/w13141954
Received: 22 May 2021 / Revised: 7 July 2021 / Accepted: 13 July 2021 / Published: 16 July 2021
Olive cultivation is expanding rapidly in the northwestern part of Greece, under both rainfed and irrigated practices. Irrigation can result in larger yields and economic returns, but trade-offs in the water–energy–pollution nexus remain a controversial and challenging issue. This study presents an environmental Life Cycle Assessment (LCA) of Greek olive orchard systems in the plain of Arta (Epirus), comparing rainfed (baseline), Decision Support System (DSS)-based (smart) irrigation practices and farmer experience-based (conventional) irrigation practices. The contributions in this paper are, first, to provide a first quantitative indication of the environmental performance of Greek olive growing systems under different management strategies, and second, to detail the advantages that can be achieved using smart irrigation in olive cultivation in the Greek and Mediterranean contexts. Eighteen midpoints (e.g., climate change, water scarcity, acidification, freshwater eutrophication, etc.), two endpoints (damages on human health and ecosystem quality), and a single score (overall environmental impact) were quantified using the IMPACT World+ life cycle impact assessment method. The LCA model was set up using the OpenLCA software v1.10.3. The functional units were 1 ton of product (mass-based) and 1 ha of cultivated area (area-based) on a cradle-to-farm gate perspective. Irrigated systems had the lowest impacts per mass unit due to higher yields, but showed the highest impacts per cultivated area. The DSS-based irrigation management could reduce water and energy use by 42.1% compared to conventional practices. This is translated into a reduction of 5.3% per 1 ton and 10.4% per 1 ha of the total environmental impact. A sensitivity analysis of impact assessment models demonstrated that the benefits could be up to 18% for 1 ton of product or 22.6% for 1 ha of cultivated land. These results outline that DSS-based irrigation is a promising option to support less resource-intensive and sustainable intensification of irrigated agriculture systems in the plain of Arta. View Full-Text
Keywords: life cycle assessment; olives; agricultural irrigation; decision support systems; smart agriculture; Greece life cycle assessment; olives; agricultural irrigation; decision support systems; smart agriculture; Greece
Show Figures

Figure 1

MDPI and ACS Style

Fotia, K.; Mehmeti, A.; Tsirogiannis, I.; Nanos, G.; Mamolos, A.P.; Malamos, N.; Barouchas, P.; Todorovic, M. LCA-Based Environmental Performance of Olive Cultivation in Northwestern Greece: From Rainfed to Irrigated through Conventional and Smart Crop Management Practices. Water 2021, 13, 1954. https://doi.org/10.3390/w13141954

AMA Style

Fotia K, Mehmeti A, Tsirogiannis I, Nanos G, Mamolos AP, Malamos N, Barouchas P, Todorovic M. LCA-Based Environmental Performance of Olive Cultivation in Northwestern Greece: From Rainfed to Irrigated through Conventional and Smart Crop Management Practices. Water. 2021; 13(14):1954. https://doi.org/10.3390/w13141954

Chicago/Turabian Style

Fotia, Konstantina, Andi Mehmeti, Ioannis Tsirogiannis, George Nanos, Andreas P. Mamolos, Nikolaos Malamos, Pantelis Barouchas, and Mladen Todorovic. 2021. "LCA-Based Environmental Performance of Olive Cultivation in Northwestern Greece: From Rainfed to Irrigated through Conventional and Smart Crop Management Practices" Water 13, no. 14: 1954. https://doi.org/10.3390/w13141954

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop