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Abstract: Olive oil is a widely used consumer product, so producers and consumers are increasingly
looking for sustainable productions. The olive-oil production chain requires continuous improvements
to gradually replace the most environmentally impactful practices with others that are more sustainable.
This research aimed to evaluate the environmental impacts of the production of olive oil in the
Campania region by comparing six olive oil production systems (two organic certified, two integrated,
and two organic—hobbyists). The environmental impacts for the production of one liter of oil—from
field cultivation to oil distribution—were quantified by applying the life cycle assessment methodology.
Impact categories were calculated according to the CML method, with particular attention paid
to global warming potential. The production of one liter of oil caused CO2eq emissions ranging
from 0.22 to 3.39 kg. The least impacting cultivation method was the hobby one, which did not
use pesticides and carried out organic fertilization. On average, packaging accounted for 60% of
total impacts; consequently, the materials and formats choice by farms had strong effects on the
environmental sustainability of oil production. This research highlights the problem of expressing
sustainability judgments in agriculture, since there are no reference standards/targets that set limits
beyond which agricultural productions are no longer sustainable.
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1. Introduction

Olive oil is a product with a great economic importance, both in terms of production and
consumption, above all in European Union [1]. The olive supply chain is associated with several
negative effects on the environment, which cause mainly the depletion of resources, land degradation,
air emissions and waste generation [2]. This is due to the techniques adopted for olive cultivation,
the oil extraction method chosen, and the management of by-products and waste, which vary among
the different producing countries, but also from region to region of the same country. As a matter of
fact, olive oil production is affected by the specific local traditions, the characteristics of the cultivars,
the typical agronomic management and by the specific socio-economic and climatic conditions of the
territory [3].

Olive tree cultivation has been handed down over time, thanks to the beneficial properties of the
olive oil, both nutritional and healthy, and the longevity and adaptability of this crop. Consequently,
olive production has undergone a strong increase to the present day. Furthermore, in the wake of
the success of the “Mediterranean diet”, declared as a cultural heritage of humanity by UNESCO [4],
there has been a record growth in the world consumption of olive oil: this, in the last 25 years—a single

Agronomy 2020, 10, 416; doi:10.3390/agronomy10030416 www.mdpi.com/journal/agronomy

http://www.mdpi.com/journal/agronomy
http://www.mdpi.com
https://orcid.org/0000-0002-5128-2824
http://dx.doi.org/10.3390/agronomy10030416
http://www.mdpi.com/journal/agronomy
https://www.mdpi.com/2073-4395/10/3/416?type=check_update&version=2


Agronomy 2020, 10, 416 2 of 21

generation—has increased by almost 49%, changing the diet of citizens in many countries, from Japan
to Brazil, from Russia to the United States, from Great Britain to Germany [5].

Since the olive tree is a Mediterranean crop, even today in 2018, after thousands of years,
about 93% of the olives’ production (in tons) is concentrated in the Mediterranean basin, and in
particular in Spain (1,839,000), Italy (413,200), Tunisia (289,000) and Greece (208,900) [6]. World olive oil
production, variable as a result of the alternate bearing characterizing this species, in 2018 amounted to
3083 thousand tons [7], considering the fact that now medium and good quality productions are also
obtained in Argentina, Australia and United States. At the quantitative level, the production of these
last three countries remains marginal, as it covers less than 2% of the entire world olive area [6].

As for the consumption of olive oil, from data released by the International Olive Council (IOC)
in 2014, Italy is the first olive oil consumer, with 620 thousand tons of the 3 million tons consumed in
the world, followed by Spain and Greece, which hold, together, 42% of world consumption. The same
data also showed a sharp increase in consumption in non-European countries. From 1991 to 2013,
in the reference years for the IOC data, a growth rate in global consumption of 3.4% per year was
observed, going from 1 million and 666 thousand tons in 1991, exceeding 3 million in 2014. The biggest
growth trends have occurred in Australia, the USA and Japan, with an average annual growth of 11%,
10% and 4%, respectively [8]. In Italy, the total area covered by olive groves is 1,147,505 hectares. The
regions with the largest olive areas are the following: Puglia (392,150 ha), Calabria (183,400 ha), Sicily
(157,586 ha), Tuscany (83,525 ha), Lazio (80,181 ha) and Campania (75,334 ha) [9].

The Italian farms that cultivate olive for oil are 825,201 [9], 81% of which have an average size of
less than five hectares. Most of them are family-run and do not guarantee the sustenance of the family.
They are often managed on a part-time or even hobby basis, so are the most environmentally friendly.
In these cases, the agricultural activity is a secondary and marginal activity, with an unsatisfactory
profitability. As a consequence, this does not generate interest in investing in olive growing [9]. On the
other hand, the few biggest farms (19% are those with more than five hectares and representing 48%
of the Italian olive surface), whose aim is to increase productivity and farm profitability, are able to
produce enough olive oil to make Italy the second country in the world for production (45% Spain,
15% Italy) and export (60% Spain, 20% Italy) [7]. This type of intensive cultivation, aimed at increasing
output through more input use (labor, capital, energy, other raw materials) and higher resource yield
by means of technological progress, has led to a rise in agricultural incomes but also to the depletion of
natural resources which are already scarce. At the same time, the concept of sustainability—understood
as the right balance between the environmental, social and economic elements of a system—has
become widespread. This is born to break the continuous resources consumption and limit the
impacts that production systems have had on the environment. The right balance, achievable with
sustainable development, is not a definitive harmony condition, but rather a process of change based
on choices (resource exploitation, investments direction, orientation of technological development and
institutional changes), coherent with the future needs as well as with the present ones [10]. Therefore,
sustainability must be seen as a continuous process, not as a state, towards inter-generational equity
and respect for the environment. Within the agricultural sector, organic farming can ensure this.
In particular, sustainable agriculture uses and integrates local natural resources in order to maintain
and improve soil fertility, promote more efficient use of water, increase the biodiversity of plant species
and farmed animals, protect biodiversity in soils and agricultural environments, reduce the use of
synthetic products for pest and pest management and promote ecosystem and social services within
the territory [11]. This becomes part of the regulated organic agriculture, which responds to what is
established by the current European regulations on the subject [12,13] and is subjected to a control that
is systematically applied to all productions. However, as said by Tuck et al. [14], the overall benefits of
organic farming on biodiversity, environment, human health and food security have been intensely
debated in recent years. Indeed, sustainable agriculture implies the ability of agro-ecosystems to remain
productive in the long-term, namely to be economically competitive, to produce enough quantities
of high-quality food at affordable prices, and to be environmentally friendly [15]. The continuous
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increase in the use of human-made inputs has increased crop yields, but it has caused reductions in
the quality of natural capital (e.g., soil degradation, pollution, reduction of natural resources) and,
therefore, of the production capacity [16–19]. However, the development and characteristics of organic
technology raise important research questions concerning its productivity and technical efficiency in
using capital, labor and natural resources such as land and energy [20]. Therefore, there is the need to
analyze each specific situation to design locally appropriate management systems. To be sustainable,
the olive oil supply chain requires a continuous improvement process, in which the most impactful
techniques, those harmful for the environment, are progressively replaced with more sustainable
ones. There are several methodologies to assess the agricultural impact on the environment. Notably,
van der Werf and Petit [18] affirmed that indicators of environmental impact may be based either on
farmer production practices (“means-based”) or on the effects these practices have (“effect-based”) on
the state of the farming system or on emissions to the environment. So, these authors compare and
analyzed 12 indicator-based approaches to assess environmental impact at the farm level, providing a
characterization of their components and functioning at the farm level. They concluded that a great
diversity in their analysis exists and, consequentially, science-based threshold values should be defined
for indicators and the method used should be validated with respect to the appropriateness of its set of
objectives relative to its purpose and its indicators. Payraudeau and van der Werf [21] provided an
analysis of six main methods used for assessing the environmental impact of agriculture on the scale of
a farming region (environmental risk mapping, life cycle analysis, environmental impact assessment,
multi-agent system, linear programming and agro-environmental indicators). They concluded that
indicators which express and impact both per kg of product and per unit of land area used bring
together the essential functions of agriculture, namely production and occupation of the countryside.
Lastly, the method should be validated with respect to the conception of the method and its indicators,
the consistency of the values of the indicators in relation to observed values, and finally, the suitability
of the indicators and more generally, of the assessment method for the end users. The authors of
the present research think that the life cycle assessment (LCA) is the only methodology that allows
one to analyze the whole life cycle of a product or service. Furthermore, as said by Backer et al. [15],
LCA has proven to be a valuable tool to address questions on the environmental impact of various
agriculture production systems, relating to both the identification of the subsystems that contribute
most to the total environmental impact and the comparison of products and processes with the same
function [22–29]. So, Cederberg and Mattsson [30], Haas et al. [31], de Boer [32], Gravendijk [33],
Thomassen et al. [29], Knudsen et al. [34] and Pirlo and Lolli [35] used LCA technique to analyze
conventional and organic milk production chains. Nienhuisen de Vreede [36], Kramer et al. [37], van
Woerden [38], Halberg et al. [39], Foteinis and Chatzisymeon [40] and Ronga et al. [41] assessed the
LCA profile of organic and conventional vegetables. Nicoletti et al. [42] and Villanueva-Rey et al. [43]
applied LCA to investigate the environmental performance of organic/biodinamic and conventional
vine growing, and Stern et al. [26], Noya et al. [44], McAuliffe et al. [45] and Makara et al. [46] studied
various scenarios for sustainable pig production by means of LCA. A wide review of LCA applications
in the fruit sector can be found in Cerutti et al. [47] and those specifically for the olive oil sector in
Espadas-Aldana et al. [1].

Attention and importance must be given to C sequestration by agricultural systems (soil and
plant), especially those composed by perennial crops. Aguilera et al. [48] evidenced low N2O emissions
associated to organic fertilizers and higher soil organic carbon (SOC) stocks in organically managed
soils under a Mediterranean climate. González-Sánchez et al. [49] found a C sequestration rate under
cover crops in Spanish fruit tree orchards to be equal to 1.59 Mg C ha−1 in short-term experiments
(<10 years) and 0.35 Mg C ha−1 in long-term ones (>10 years). Palese et al. [50] demonstrated as some
agronomical sustainable practices—the distribution of the real nutrient needs of the olive grove by
balanced fertigation, annual pruning, cover crops use, recycling of organic materials internal to the
orchard (cover crops and pruning residues left on the ground)—improved the ability of the olive
grove to sequester CO2. Looking at the calculated CO2 fluxes (Annual Net Primary Productivity
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versus total emissions), this olive orchard system showed a positive budget, with a high gain of CO2

(15.45 t ha−1 year−1) sequestered from the atmosphere. Mohamad et al. [51] found that manure was
the primary contributor to increased SOC in an organic system, resulting in a higher efficiency of
carbon sequestration. This SOC increase compensated for the higher carbon emission from the organic
system, resulting in higher negative net carbon flux in the organic versus the conventional system
(−1.7 vs. −0.52 t C ha−1 year−1, respectively) and higher efficiency of CO2 mitigation in the organic
system. Proietti at al. [52] reported that non-permanent components (olive pruning and fruits) have
a great ability to stock C: the greatest contribution to this quantity is due to the fruits, which have a
storage capacity of more than twice than pruning residues. Even if the carbon stocked by fruits is lost
from the olive grove through the harvesting operation, a significant percentage would return to soil
thanks to the soil amendment operation realized with olive pomace. In their study, the net carbon
balance of the analyzed olive systems was always positive, with carbon sequestrations greater than
emissions. For this reason, the authors assumed that olive groves are agricultural systems, able to
remove all the emissions associated to the oil production chain. They highlighted that extra virgin
olive oil can be a potential carbon negative product under certain conditions, mainly if of local origin
(“km 0” product) and produced by means of traditional practices [52].

The present research analyzed and evaluated some olive oil production systems, under an organic
and integrated regime and representative of Salerno Province (Campania region). The main aim was
to quantify their environmental impact, identify those operative strategies leading to the respect of
the sustainability principle and suggest the most effective management options. LCA methodology
was used as a tool for the analysis and the environmental evaluation of the olive oil production
systems and as support for the improvement of their environmental performance. Specifically, six
olive-oil systems with different characteristics were analyzed: two certified as organic (BIO1, BIO2),
two integrated (INT1, INT2), two organic—hobbyists (HOBB1-BIO, HOBB2-BIO). In the present work,
the LCA methodology did not analyze the full carbon (C) balance, but only the emissions.

2. Study Area and Systems Description

In the Campania Region, the olive tree has found its ideal environment, thanks to the volcanic
soils and the typically Mediterranean climate. Here, olive is a source of income for many farms,
but also an important guarantor protection of territory and landscape. In Campania, 85,870 olive
oil farms spread over almost 75,000 hectares of UAG (utilized agricultural area), equal to almost
10% of national olive oil farms and just under 8% of Italian olive oil UAG [9]. Of the farms that
produce olive oil (85,870), about 1000 are organic [9]. Moreover, Campania can boast an excellent olive
growing, thanks to the autochthonous varieties of high typicality and prestige. As a matter of fact,
there are 311 farms that produce PDO (protected designation of origin) olive oil [9]. The regional olive
production is strongly oriented towards self-consumption, with a residual share of farms (around 5%)
that declare commercialization of the product. The preferred marketing channel is the direct sales at the
farms, adopted by 40% of the farmers in combination with other channels (catering, retail, large-scale
distribution, ecommerce), and it represents an exclusive channel only for a third of them. About a fifth
of the farms sell to other commercial or industrial companies, while 15% prefer direct sales outside the
farm and only 7% sell all its production [53]. Referring to the olive industry, Campania has 317 oil
mills with 699 employees that represent 9.7% and 7.8% of the national total, respectively, and 16% and
12.7% of the Southern Italian [9].

The study was carried out in Salerno Province (SA), where there are 38,420 olive farms [9].
This province shows a very high vocation for olive growing, mainly thanks to the climate and the
typical soils of the territory. Specifically, the analyzed production and processing farms are located in
Cilento, Alburni and Valle di Diano National Park (namely BIO1, BIO2, HOBB1- BIO, HOBB2- BIO)
and in Monti Picentini Regional Park (INT1 and INT2, which fall in the same farm) (Figure 1).
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Figure 1. Map of Salerno Province with the location of the analyzed systems.

The main features of the studied orchard systems are reported in Table 1. They were collected
through: direct interviews with farmers using a specific collection sheet; visits to the farms and
consultation of field notebooks. The olive orchard systems differed mainly for cultivar (Salella, Leccino,
Frantoiana, Rotondella, Ogliarola and Carpellese) and for the used cultivation system: organic (certified
or not) vs. integrated. The integrated system is the most common method to manage fruit orchards in
the studied area. It is a “mixed” cultivation method which uses both chemical and natural products
in fertilization and disease control. This farming system produces high quality yields using specific
protocols, as reported in Decree No. 2722, 17/04/2008 [54].

Table 1. Technical and agronomic characteristics of the analyzed systems.

Orchard
Characteristics BIO1 BIO2 INT1 INT2 HOBB1-

BIO
HOBB2-

BIO

Cultivar
Salella Rotondella Rotondella Leccino Rotondella Rotondella
Leccino Salella Frantoio Ogliarola Carpellese

Frantoiana Carpellese

Planting density
(trees ha–1)

156
(8m × 8m)

278
(6m × 6m)

833
(6m × 2m)

400
(5m × 5m)

333
(5m × 6m)

Trees age (years) Secular Secular 80 30 Secular Secular

Cultivation
system

Certified
organic Certified organic Integrated Intensive

Integrated Organic Organic

Pruning method Manual

Pruning
residues

management

Used as soil
mulching Composting Firewood Used as soil

mulching Firewood Firewood

Fertilization Annual/
organic

Annual/
organic

Annual/
mineral

Annual/
mineral

Annual/
organic -
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Table 1. Cont.

Orchard
Characteristics BIO1 BIO2 INT1 INT2 HOBB1-

BIO
HOBB2-

BIO

Soil
management/weed

control

Temporary natural grass
cover - Disk harrowing

Disk
harrowing -
Glyphosate

Temporary natural grass
cover - Disk harrowing

Disease control Organic products Organic
products

Conventional products - -

Harvesting
method/hours

Mechanized
/18

Mechanized
/12

Manual/
400

Mechanized
/64

Manual
/30

Manual
/16

Olives average
yield (kgha−1

year−1)
8300 3500 8000 8500 4300 7400

3. Materials and Methods

The analysis was performed using the LCA approach according to the ISO 14040-44: 2006 [55,56].
As said by Pergola et al. [57], LCA is an analytical tool which allows one to identify the overall
environmental impacts of a product, process or human activity from raw material acquisition, through
production and use, to waste management [58]. The purpose of LCA studies can be the comparison
of alternative products, processes or services; the comparison of alternative life cycles for a certain
product or service; or the identification of steps of the life cycle where the greatest improvements can
be made [59].

3.1. Goal and Scope Definition

One of the aims of the present research was to estimate and compare the environmental impacts
of six olive oil systems, in which the agricultural phase differs according to three systems of cultivation
(certified organic, integrated and not certified organic). The study was “cradle to grave”, namely from
the extraction of raw materials up to the sale of the final product (olive oil), excluding the planting
phase of the olive orchards, as foreseen by the relative PCR (product category rules) 2010:07 “Virgin
olive oils and its fractions” [60], since the analyzed orchards were secular or in any case planted for
more than 25 years.

Keeping in mind that the aim of the present research was the estimation of environmental impacts
to adopt the most sustainable management options, two functional units, namely the reference on the
basis of which all data were analyzed and characterized [55,56], were chosen: on the one hand, one liter
of oil produced, as established by the relative PCR, including its primary and secondary packaging in
glass bottles (capacity of 0.1–0.25–0.75–1 liter) and in tins (capacity of 3 and 5 liters); on the other hand,
the surface unit (1 hectare) with the aim to improve environmental results interpretation [57,61,62].

The system boundaries, as shown in Figure 2, started from the olive tree cultivation and ended
with the olive oil sale. They included all the activities characteristic of the olive oil supply chain,
divided into upstream, core and downstream activities. In particular, among the upstream activities,
the following were considered:

• input production;
• agronomic operations for olive tree cultivation (pruning, soil tillage and management, cutting of

pruning residues when present, fertilization, disease control), olives harvesting and their transport
to the olive oil mill;

• production of primary and secondary packaging material; among core activities:
• processing of olives into oil, its storage, bottling and packaging; among the downstream activities:
• distribution and the end of life of inputs and materials.
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Figure 2. System boundaries for life cycle assessment (LCA).

The analysis did not consider:

• the use phase, as no environmental impact is associated to the traditional use of extra virgin olive
oil (to flavor foods). Furthermore, it was assumed that olive oil was consumed raw and that the
residue present in the bottle was irrelevant compared to the total quantity of the product;

• in accordance with the PCR in force [60], machines and tools used as well as the buildings, since
they have a useful life of more than 10 years;

• impacts related to the end of life of pruning material removed from the field—since it was
destined to another use (firewood)—and pomace, which in the area under study is usually sold to
composting plants or biogas plants, so falling under other life cycles as by-products.

Furthermore, due to the lack of data, the analysis did not consider:

• input transport (fertilizers and pesticides) from the place of production to the field.

All the inputs used in the agricultural phase (fertilizers, pesticides, fuels, various materials utilized
during the harvesting) were considered. For the other phases—oil processing and distribution —all
energy consumptions and the different materials used were taken into account.

3.2. Life Cycle Inventory

Primary data (features of the studied orchard systems, amount of fertilizers, chemicals, diesel,
water and other items) were collected in situ during the 2018–2019 agricultural year, as an average
of the last 5 years of production, using a data collection sheet. This information was gathered from
farmers. The following operations were taken into account: agronomic operations for olive tree
cultivation; transport of the olives from the field to the oil mill; processing of olives into oil, its storage,
bottling and packaging; distribution of the produced olive oil. As already mentioned, farm features are
reported in Table 1, while farm inputs used in the examined systems are reported in Table 2. Table 3
shows the different methods adopted to transport olives from the field to the oil mill for each olive oil
system, with details on means (essential for estimating the fuel consumptions), type of containers, as
well as on average distance between field and oil mill. Information on oil extraction (methods, energy
consumption, inputs) are reported in Table 4. Olive oil extraction took place via a “centrifugation”
system. According to this method, the oil paste is subjected to centrifugation in a conical drum rotating
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on a horizontal axis (called a decanter). The average consumption (kW kg-1 of processed olives) varied
according to the hourly capacity of the oil mill and the quantity of pressed olives. Oil yield depended in
part on the oil mill, but it was closely linked to the cultivar, olive maturation, time between harvesting
and milling, and management of the agricultural phases (Table 4). Data on packaging of the olive oil
produced and on its distribution are reported in Tables 5 and 6, respectively. In this research, priority
was given to using primary data in terms of input material typologies and amounts used (Table 2).
Additionally, to estimate direct and indirect emissions, the active ingredient of each product, and the
amount of fuel and energy consumed, were calculated and used in the analysis for each operation as a
standard practice in LCAs. Methodological details are specified in Pergola et al. [57].

Table 2. Farm inputs used in the analyzed systems.

BIO1 BIO2 INT1 INT2 HOBB1-BIO HOBB2-BIO

Fertilizers (kg ha–1)

Ferti Field (organic nitrogen) - - 800 800 - -

compost 400 - - - - -

NPK - - - - 300 -

Chemicals (kg ha-1)

Bordeaux mixture 3 - - - - -

lime - 1.5 - - - -

kaolin 1 1.5 - - - -

Vitabor 1.5 - - - - -

Copper, Sulfur, Zeolite - 1 - - - -

Idrofloral - - 6.5 6.5 - -

Iperion - - 9 9 - -

Boron 1 - 2 2 - -

Epik - - 1.2 1.2 - -

Gliphosate - - 4 - - -

Human labour (h ha–1) 257 85 501 120 186 52

Machinery and farm tools (h ha–1) 117 69 134 106 130 66

Diesel (kg ha–1) 181 66 81 80 54 58

Table 3. Methods of olives transporting from the field to the oil mill in the analyzed systems.

Systems Type of the
Transport Type of Container Average Distance

Field-Oil mill (km)

BIO 1 Truck Plastic bins capacity 400 kg 38

BIO 2 Truck Plastic bins capacity 400 kg 1.5

INT 1 Tipper truck Plastic bins capacity 400 kg 5

INT 2 Tipper truck Plastic bins capacity 400 kg 4

HOBB1-BIO Car (Jeep) Juta bags capacity 40 kg 1.5

HOBB2-BIO Car (Jeep) Juta bags capacity 40 kg 2
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Table 4. Features of the oil mill where olives, collected from the analyzed systems, were processed.

Systems kg of
Olives

Extraction
Method

Average
Yield in Oil

Liters of Oil
Produced

Energy
Consumptions

(kW lil
–1)

Water
Consumptions

(m3 loil
–1)

BIO 1 8300 Centrifugal
3 - phases 0.12 996 0.018 0.008

BIO 2 3500 Centrifugal
2 - phases 0.15 528 0.030 0.004

INT 1 8000 Centrifugal
2 - phases 0.13 1040 0.020 0.005

INT 2 8500 Centrifugal
2 - phases 0.13 1105 0.020 0.005

HOBB1-BIO 4300 Centrifugal
3 - phases 0.2 560 0.010 0.005

HOBB2-BIO 7500 Centrifugal
3 - phases 0.13 975 0.010 0.008

Table 5. Types and combinations of packaging used by the analyzed systems.

System
Oil

Produced
l ha–1

Glass Bottles (l) TIN (l) Polyethylene
Containers (l)

0.1 0.25 0.5 0.75 1 3 5 15

BIO1 996 - 10% 10% - 10% 70% - -

BIO2 528 - 5% 40% 40% - 5% 10% -

INT1 1040 2% 3% 5% 5% - 15% 70% -

INT2 1105 2% 3% 5% 5% - 15% 70% -

HOBB1-BIO 860 - - - - - - - 100%

HOBB2-BIO 875 - - - - - - - 100%

Table 6. Details of olive oil sale for each analyzed system.

System Sale
Market Type of Transport

Italy Abroad on the Road by Ship by Airplane on Rails

BIO 1 yes 100% - 90% - - 10%

BIO 2 yes 80% 20% 80% 15% 3% 2%

INT1 yes 90% 10% 90% 7% 1% 2%

INT2 yes 90% 10% 90% 7% 1% 2%

HOBB1-BIO no - - 100% - - -

HOBB2-BIO no - - 100% - - -

3.2.1. Direct Field Emissions

Direct emissions from fuel and lubricants were taken from SimaPro’s LCI databases. Referring to
fertilizers, as explained in our other research [57], an entire mineral balance was not undertaken to
estimate emissions from them. It is often difficult to derive exact rates of N released to the air and water,
because emission rates can greatly vary depending on soil type, climatic conditions, and agricultural
management practices. However, nitrogen emissions from the cultivation were accounted for according
to Brentrup et al. [63] and IPCC [64]. In particular, considering the air temperature occurred at the
organic nitrogen application time, the timing of soil incorporation and rainfall events, ammonia
emissions in air from organic nitrogen, valued in the systems INT1 and INT2, were equal to 15% of
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the applied NH4-N. Ammonia volatilization from mineral fertilizers application (namely NPK for
HOBB1 - BIO) to soil incorporation, evaluated taking into account the type of mineral fertilizer and
the geographical location of the olive system, was equal to 2% of the applied NH4-N. The nitrous
oxide emissions are influenced by a lot of interactions between soil, climate factors and parameters
determined by agricultural management (soil aeration, soil water content, nitrogen availability, soil
texture, compaction, etc.) and they are not well understood to propose their estimation or even an
appropriate calculation method [63]. So, as proposed by Brentrup et al. [63], N2O emissions from
fertilizers were computed considering the emission factor proposed by Bouwman [65] equal to 0.0125.
N2O emissions from crop residues (grass cover and pruning residues) should be instead accounted for
considering their annual N content and the corresponding emission factor equal to 0.01 [65], but in the
present study were not considered for the lack of data on grass cover and pruning material quantity.
Likewise, N leaching and run-off, as N loss processes, were not considered because the analyzed
orchards fall in an area where leaching/run-off does not occur; in addition, the difference between
precipitation in the rainy season and the potential evaporation in the same period is not greater than
soil water holding capacity. Moreover, irrigation was not employed within the analyzed orchards [64].

As in Milài Canals et al. [28], emissions of synthetic pesticides to air, surface water, groundwater
and soil were estimated according to the methodology suggested by Hauschild [66]. These estimates
considered both site conditions (soil organic matter, texture, climate, etc.) and physico-chemical
characteristics of the active ingredients (vapor pressure, half-life determined by photolysis, half-life
in soil, adsorption coefficient to organic material in soil). In more detail, the predominant route
to the surrounding environment for the considered active ingredients has been via volatization
and re-deposition.

3.2.2. Embodied Emissions

Secondary data were extrapolated from international databases of scientific importance and
reliability, like the Ecoinvent 3 [67]. In particular, this was done for the production of diesel, lubricants,
fertilizers and pesticides used in the investigated systems, including the accounting of the resulting
emissions, as specified in Pergola et al. [57]

3.3. Life Cycle Impact Assessment

The impact assessment was performed using SimaPro 8.02, with the problem oriented LCA
method developed by the Institute of Environmental Sciences of the University of Leiden [68].
The following impact categories were considered according to the selected method: abiotic depletion
(AD); abiotic depletion (fossil fuels) (AD fossil fuels); global warming potential (GWP) or climate
change; photochemical oxidation (PO); ozone layer depletion (ODP); human toxicity (HT); fresh
water aquatic ecotoxicity (FWE); marine aquatic ecotoxicity (MAE); terrestrial ecotoxicity (TE); air
acidification (AA) and eutrophication (EU).

4. Results and Discussion

Results concern the entire life cycle of the production of olive oil. As a matter of fact, environmental
impacts associated with all the phases necessary to obtain a bottle of olive oil, from field to the end of
the production cycle—the so-called “cradle to grave” approach—were evaluated. Particularly, data are
shown as total impacts relating to all the impact categories analyzed and with a focus on the global
warming potential for each phase of the oil production chain.

4.1. Results on Data Collection

Among the analyzed farms, the organic cultivation system was the most present, albeit managed
in different technical ways. Common to all organic farms was the use of fertilizers and pesticides of
natural origin. The system INT1 applied an integrated cultivation system, using synthetic fertilizers,
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pesticides and glyphosate for weed control. The system INT2, although using an integrated cultivation
method, did not carry out chemical weed control (Table 1).

Other important differences of the cultivation phase among the analyzed systems concerned
the final destination of pruning residues and the harvesting methods. With reference to the former,
only BIO1 and INT2 chopped pruning residues in the field, BIO2 used them in composting as structuring
materials; the others moved them away from the field to use as firewood. Harvesting was carried
out with different methods depending on the size of the farm. In particular, BIO1, BIO2 and INT2
carried out a mechanized harvesting using different capacities and power tractors combined with a
mechanical shaker. HOBB1-BIO and HOBB2-BIO, being small and purely hobbyist farms, carried out
a manual harvesting by means of electric shakers. INT1 system performed harvesting with manual
combs. This last farm, before harvesting, carried out a preliminary operation aimed at covering the
ground with nets, sewn with special sewing machines, which is a typical operation performed in the
study area to prevent the loss of part of olive during harvesting. For this reason, INT1 farm had the
highest number of harvesting hours (400 h), even if 80% of these hours were used precisely for the
preparation of nets with the sewing machines.

Among systems, INT2—the intensive olive grove—showed the highest yield per hectare, due to
the highest plant number per hectare and to intensive soil and plant management, aimed at achieving
maximum production per unit area (Table 1).

Packaging of the olive oil produced was a crucial process for the olive-oil production chain.
The farms interviewed respected the needs and demands of the market, and systems BIO2, INT1 and
INT2, present on the regional and national markets, but also on international, used certain formats in
place of others.

Systems using the primary packaging (Table 5) showed the following behaviors:

• BIO1 used mainly the 3-liter tin (70%) and only a bit of the bottles;
• BIO2 used mostly 0.5 and 0.7-liter bottles (80%) and minimally the tins;
• INT1 and INT2 clearly prefer the 5-liter tin (70%) and limitedly the bottles.

Dark glass bottles were used in order to delay the oxidation processes favored by the light. Choice
formats depends a lot on the intended use of the product. Specifically, if the oil is used for catering as a
condiment to be served at the table, the format of 0.25 l is preferred. This is because, as established by
law 161/2014 in article 18 [69], packaged oils used in public establishments must be equipped with a
closing system (anti-filling plug), in so as to avoid its reuse after the exhaustion of the original content
indicated on the label. Tinplate made with a single metal and without welds was another type of
packaging very common among the examined systems. Thanks to modern technologies, the welding
phase of this metal has been eliminated to avoid corrosion phenomena and iron release in ionic form,
which catalyzes the oil degradation process when the package is opened. The tin was mainly intended
for customers who purchase large quantities of olive oil.

“Hobby” systems, which did not sell the oil, did not resort to any type of packaging (Table 5).
In fact, HOBB1-BIO and HOBB2-BIO used a single plastic container for oil transport from the oil mill
to the farm. The container was then washed and reused, and renewed on average every five years.
Olive oil, once at farm, was immediately transferred into a steel container for subsequent storage.
Only INT1 and INT2 used the secondary packaging, and specifically a recycled cardboard box with a
3-liter capacity.

Referring to distribution, olive oil was mainly sold on the regional and national markets, where it
was placed by means of road transport (Table 6).

4.2. Total Environmental Impacts along the Entire Life Cycle

Environmental impacts were calculated for 11 impact categories, according to the 2010: 07 PCR [60]
(Table 7). Results—for each olive oil system—are referred to the functional unit and allow to make the
following observations:
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• the most sustainable systems were the hobby-organic ones, for all impacts categories;
• INT1 was the most impactful in terms of resource consumption (abiotic depletion), global warming,

and marine and terrestrial ecotoxicity;
• BIO2 was the most impactful in reference to human toxicity;
• BIO1 was the most impactful in reference to the ecotoxicity of fresh water.

Data normalization showed that each impact category was influenced by a different group of
operations, depending on the system considered. In particular, abiotic depletion was due to packaging
in all systems, except in the hobbyist ones. Fossil fuels depletion, global warming potential and
ozone layer depletion were mainly due to packaging and the agricultural phase in BIO and INT
systems (specifically soil management in BIO1; harvesting in BIO2; fertilization in INT systems), while,
in HOBB1-BIO, to transport, harvesting and fertilization and in HOBB2-BIO, to soil management,
harvesting and transport. In BIO and INT systems, human toxicity, aquatic (fresh water and marine)
and terrestrial ecotoxicity were due mainly to the agricultural operation of disease control and
packaging, while in HOBB1-BIO to harvesting, transport and transformation, and in HOBB2-BIO to
soil management and transformation. Photochemical oxidation was influenced in a more varied way:
mainly by packaging in BIO1; by packaging and harvesting in BIO2; packaging and fertilization in
INT1 and INT2; by fertilization, harvesting and transport in HOBB1-BIO and by soil management,
harvesting and transport in HOBB2-BIO. Finally, acidification and eutrophication were mainly due to
disease control/fertilization and packaging in all BIO and INT systems; to fertilization, harvesting and
transport in HOBB1-BIO and, as above, to soil management, harvesting and transport in HOBB2-BIO.

Referring to global warming, the most impactful olive oil system was INT1 (3.39 kg of CO2eq l–1),
which implemented an integrated cultivation method, followed by the certified organic BIO1 system
(2.77 kg of CO2eq l–1), INT2 (2.64 kg of CO2eq l–1), BIO2 (1.82 kg CO2eq l–1) and the HOBB1-BIO
system (0.74 kg of CO2eq l–1). HOBB2-BIO was the system with the lowest impact per unit of product
(0.23 kg CO2eq l–1), thanks to the adoption of organic-related cultivation methods and to the total
absence of phytosanitary treatments (Table 7). On the other hand, by comparing these emission data
with C sequestration range reported by Proietti et al. [52]—from 6.15 to 17.79 kg CO2eq l-1 of olive
oil—it is possible to assert that all the analyzed systems are sustainable: the net balance is positive,
since C sequestered is greater than that emitted.

Table 7. Total environmental impacts specified for individual impact categories per liter of olive oil
produced by each analyzed system.

Impact Categories Unit kg–1 BIO1 BIO2 INT1 INT2 HOBB1- BIO HOBB2 - BIO

Abiotic depletion kg Sb eq 0.00 0.00 0.00 0.00 0.00 0.00

Abiotic depletion
(fossil fuels) MJ 37.81 24.48 46.80 36.61 8.39 3.42

Global warming
(GWP100) kg CO2eq 2.77 1.82 3.39 2.64 0.74 0.23

Ozone layer
depletion (ODP) kg CFC-11 eq 0.00 0.00 0.00 0.00 0.00 0.00

Human toxicity kg 1.4-DB eq 4.40 4.84 3.69 3.10 0.03 0.01

Fresh water aquatic
ecotox. kg 1.4-DB eq 1.10 0.61 1.07 0.82 0.01 0.01

Marine aquatic
ecotoxicity kg 1.4-DB eq 4440 2746 4486 3558 39 23

Terrestrial
ecotoxicity kg 1.4-DB eq 0.01 0.01 0.01 0.01 0.00 0.00

Photochemical
oxidation kg C2H4eq 0.00 0.00 0.00 0.00 0.00 0.00

Acidification kg SO2eq 0.05 0.02 0.05 0.04 0.00 0.00

Eutrophication kg PO4
3-eq 0.01 0.01 0.01 0.01 0.00 0.00
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4.3. Environmental Impacts per Each Phase of the Production Chain

Impacts (global warming, GWP100) relating to the phases of the olive oil production chain are
reported, taking into account the different analyzed systems. With respect to the agricultural phase,
data referred to the hectare confirm what was seen per liter of oil: INT1 was the most impacting system
in terms of CO2eq (1030 kg of CO2eq ha–1) due to the intensive orchard management (four disease
control treatments, a chemical weeding with glyphosate and fertilizations with synthetic products,
harrowing and shredding, and manual pruning, mechanical harvesting with use of mobile nets and
plastic boxes) (Table 8). On the other hand, in this phase, HOBB2-BIO emitted the least quantity of
CO2eq per hectare: no chemical treatment was carried out within this system and harvesting was
manual. The breakdown of impacts by agricultural operation (Figure 3) showed that global warming
was mainly due to harvesting in BIO1 and BIO2, while to fertilization in INT1, INT2 and HOBB1-BIO.
In particular, referring to fertilization, indirect emissions of input (manufacture and transportation)
represented about 90% of total impact.

Table 8. Global warming (kg CO2eq ha–1) per phase of the production chain for each analyzed system.

Systems Agricult.
Phase

Transport
Field - Oil

Mill

Oil Mill
Packaging TotalOlives

Processing Bottling Storage

BIO1 771 80 81 - 0.22 1827 2759

BIO2 323 41 7 0.20 - 589 960

INT1 1030 3 13 - 50 2431 3527

INT2 922 3 13 - 50 1925 2913

HOBB1-BIO 370 245 9 - 12 - 635

HOBB2-BIO 151 48 9 - 13 - 221

Figure 3. Agricultural phase: global warming (kg CO2eq ha–1) for the different agricultural operations.

Comparing the contribution to the impact of the agricultural phase of the three different cultivation
methods analyzed (integrated, certificated organic, hobby—organic system), the greatest impact was
attributed to systems that used integrated cultivation methods with intensive use of synthetic pesticides
and fertilizers (INT1 and INT2). Certificated organic systems, although using non-synthetic products,
had slightly lower impacts than integrated ones, because of a considerable distance of the olive orchard
from the farm center (Table 2) and frequent treatments, which involved significant consumptions of
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fossil fuels. On the contrary, hobby systems were characterized by a minimal impact, less than a third
of the integrated ones, essentially attributable to the emissions linked to soil tillage.

With respect to the impacts due to the olive transport from the field to the oil mill, HOBB1-BIO
resulted the most impacting system (Table 8). This impact type, mainly caused by the diesel
consumption, strongly depended on the distance of farm from the oil mill, eventual property of this
last by the farm and obsolescence of the company machine park. Therefore, INT1 and INT2, having
advanced technology agricultural machinery and the property of the oil mill placed not far from the
olive groves, and aiming to oil sell, showed the least impact. Differently, the hobby farms used old and
ineffective agricultural machines with inevitable technological obsolescence, and needed more fuel to
reach the oil mill, about 5 km away from the field. Once the olives were delivered to the oil mill, oil
extraction, bottling and storage followed. The impacts related to these phases were mainly due to
the electric consumption of the oil mill, namely the kW needed to power the oil production process,
consisting of washing/sorting, pressing, kneading, extraction and separation phases (Table 8). In this
case, BIO1 was the most impacting system, having values equal to 81 kg of CO2eq ha–1. This is mainly
due to the very energy-intensive oil mill used by BIO1, that consumed 0.175 kW per kg of milled olives.
The high unitary energy impact of the olive processing associated with the high production in the
field (8300 kg ha–1) justified the greatest impacts per hectare. BIO2, although with limited hectare
production (3500 kg ha–1), showed the lower impact (7 kg of CO2eq ha–1), thanks to the use of an
avant-garde oil mill characterized by a low energy consumption per kilo (0.159 kW).

About bottling, only the BIO2 system used an electric bottling plant that generated a minimum
impact of 0.2 kg of CO2eq ha–1 (Table 8) and 0.0003 kg CO2eq l−1.

The storage phase produced significant emissions only in the cases where oil remained for a
long time in steel containers before sale or self-consumption. It is important to highlight that four
of the six analyzed oil systems (INT1, INT2, HOBB1-BIO, HOBB2-BIO) had higher emissions in the
storage phase than the olives processing phase (Table 8). This because the latter operation, although
crucial, generally lasts three months (from October to December), while storage lasts long periods and
consequently immobilize equipment, steel containers, and uses energy for the thermal conditioning of
oil storage rooms, so generating emissions. Finally, more than half of the environmental impact for the
production of a liter of olive oil was due to the packaging phase (Table 8). If packaging was excluded
from evaluation, global warming broke down, as shown in Table 9.

Table 9. Global warming (kg CO2eq l–1) for each analyzed system with and without packaging.

System With PACKAGING* Without PACKAGING

BIO1 2.77 0.94

BIO2 1.82 0.70

INT1 3.39 1.05

INT2 2.64 0.89

HOBB1-BIO 0.74 0.74

HOBB2-BIO 0.23 0.23

*Values referring to the packaging combinations shown in Table 5.

In detail, packaging accounted for 53% of the total global warming produced in BIO2, 65% in BIO1
and INT2 systems, and 66% in INT1 (Table 8). The higher values calculated in the latter two cases were
related to the greater use of 5-liters tin and limitedly to the presence of secondary packaging consisting
of recycled cardboard boxes with a capacity of three liters. As shown in Table 10, the choice to use tin
packaging instead of bottles, strongly penalized those systems, in which this format was prevalent
(BIO1, INT1 and INT2), in terms of global warming for the amount of olive oil produced per hectare.
Consequently, it is advisable to use light glass bottles rather than tins, as well as formats with greater
capacity—certainly the 1-liter format—in order to reduce their weight per unit of volume. The last
phase taken into account by the LCA analysis concerns the sale of the olive oil and, in particular,
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its distribution. The main market on which the analyzed systems sell their product is national, although
a small percentage is sold abroad, especially in France and Germany (Table 5). Impacts of olive oil
distribution in relation to the type of transport used are shown in Table 11. With reference to global
warming, the most impactful transport type was by airplane. Therefore, depending on the means
of transport used and the distance of the final sales point, at the CO2eq emissions per liter of oil
calculated so far (Table 7) had to be added from a minimum of 0.017 to a maximum of 0.86 kg of
CO2eq per bottle of transported oil. This confirmed that “short chain” strategies can certainly reduce
the environmental impacts of the olive oil production chain. Buying good olive oil near the place
of production would mean less impact on the environment for transport, packaging and storage,
and would support the local economy. As a matter of fact, the concept of sustainability must be
considered as a synergy among environmental, economic and social aspects. Areas in which the six
analyzed systems fall, are characterized by a dramatic demographic depopulation. A valorization
strategy of olive oil production, could led to an economic growth of these areas and an increase of
employment opportunities for the population, so reconciling the concept of social sustainability.

A brief bibliographical comparison with other LCA studies recently carried out on olive oil
production is reported in Table 12. Results refer to the same functional unit: one liter of oil produced
and bottled in a one-liter capacity bottle. In order to make a realistic comparison, results obtained
in this study have been rearranged considering only the one-liter bottle as packaging and excluding
transport. Impacts measured for the various analyzed systems were lower than those found in the
literature, except for HOBB2-BIO emissions which were similar to those reported by El Hanandeh and
Gharaibeh [70] in Jordan (Table 12).

Table 10. Global warming (kg CO2eq ha–1) according to the packaging combination chosen by the
analyzed systems.

System Dark Glass Bottle (l) Tin (l)
Carton Box

0.1 0.25 0.5 0.75 1 3 5

BIO1 - 177 102 64 1483 - -

BIO2 - 47 216 180 - 56 90 -

INT1 40 56 53 664 - 331 1234 54

INT2 42 59 56 47 - 351 1311 57

HOBB1-BIO - - - - - - - -

HOBB2-BIO - - - - - - - -

Table 11. LCA results by type of transport used. Values per km per liter of olive oil transported.

Impact Categories. Unit
Type of Transport

Airplane Ship Rail Road

Abiotic depletion kg Sb eq 0.000000 0.000000 0.000000 0.000000

Abiotic depletion (fossil fuels) MJ 0.000000 0.000210 0.000000 0.000000

Global warming (GWP100a) kg CO2eq 0.000521 0.000017 0.000020 0.000173

Ozone layer depletion (ODP) kg CFC-11 eq 0.000000 0.000000 0.000000 0.000000

Human toxicity kg 1.4-DB eq 0.000018 0.000014 0.000001 0.000011

Fresh water aquatic ecotox. kg 1,4-DB eq 0.000002 0.000005 0.000000 0.000001

Marine aquatic ecotox. kg 1,4-DB eq 0.006712 0.017902 0.000274 0.002737

Terrestrial ecotox. kg 1,4-DB eq 0.000000 0.000000 0.000000 0.000000

Photochemical oxidation kg C2H4eq 0.000000 0.000000 0.000000 0.000000

Acidification kg SO2eq 0.000001 0.000000 0.000000 0.000001

Eutrophication kg PO4
3-eq 0.000000 0.000000 0.000000 0.000000
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Table 12. Bibliographic comparison between analyzed systems and some similar studies.

References System Boundaries kg CO2eq L–1

BIO1 Cradle – to – gate 1.33

BIO2 Cradle – to – gate 1.10

INT1 Cradle – to – gate 1.49

INT2 Cradle – to – gate 1.34

HOBB1-BIO Cradle – to – gate 1.12

HOBB2-BIO Cradle – to – gate 0.61

[70] Cradle – to – gate 0.60

[61] Cradle – to – gate 1.60

[2] Cradle – to – gate 1.60

[71] Cradle – to – gate 7.80

[72] Cradle – to – grave 3.00

[73] Cradle – to – grave 3.80

Differences among our results and literature data are due to several factors, such as the system
boundaries and methods utilized for the life cycle impact assessment. From now on, the low global
warming values measured can constitute, together with the certification of origin, an important
marketing key for the olive oil production in the Park Areas under study. Indeed, the markets of the
future are increasingly oriented towards enhancing production certified for sustainability. This is
because, in increasingly competitive markets, the implementation of sustainable development models
can represent an advantage for farms, for both economic reasons (the economic policies of each
European State are increasingly aimed at promoting sustainable development, as reported in the
“2019 Europe Sustainable Development Report” [74]) and marketing purposes, since eco-sustainable
products are increasingly in demand by consumers. However, an international reference value for
environmental impacts is still missing; this could express a value of sustainability judgment to be
easily spent and communicated on the market. It is increasingly necessary, for olive oil too, to define
at least national standards of sustainability certificates, with respect to which to express the level of
sustainability of specific olive-oil systems.

5. Final Considerations

The present study falls into those actions aimed to achievement of high levels of sustainability
by agricultural farms. This is one of the main aims of the worldwide researchers who are searching
for innovations characterized by high technological content and low natural resources consumption.
Specifically, environmental impacts of the olive-oil production chain in two important protected areas
(one National Park and a Regional one) within the Salerno province were evaluated. This effort was
performed in order to identify the critical issues and suggest improvements for potentiating/increasing
environmental sustainability of olive cultivation in areas particularly susceptible to human pressure.
Among the six analyzed systems, the least impacting were the hobby systems managed according
to organic methods; this was mainly due to the absence of the packaging phase, which represented
more than 60% of the total impact, but also for the few processes and treatments that were carried
out in the field. Indeed, the second most impactful phase was the agricultural one which, on average,
caused 35% of the total CO2eq emissions. These results, obtained by means of LCA methodology,
suggest to adjust some specific steps along the entire olive oil production chain: the management of
the agricultural phase should be based on more sustainable cultivation methods (as those organic) and
on the use of efficient machines with low consumptions; olive oil processing/storage techniques at low
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energy consumption should be chosen; fully recyclable and flexible packaging should be used together
with low impact transport strategies (by rail and ship).
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