Aquatic Macrophytes Determine the Spatial Distribution of Invertebrates in a Shallow Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Monitoring Strategy and Statistical Analysis
2.3. Self-Organizing Map
3. Results
3.1. Environmental Variables and Invertebrate Distribution
3.2. Classification of Variable Features
3.3. Distribution of Gastropod Communities on Macrophyte Species
4. Discussion
4.1. Characterization of Clusters
- Cluster 1–1 included sampling sites with high pH and turbidity and low abundance of aquatic macrophytes and invertebrates.
- Cluster 1–2 showed a high biomass of T. orientalis and S. polyrhiza, and the highest abundance of Planorbidae, Corduliidae, and Hydrophilidae. However, water depth and chlorophyll-a concentration were lower in this cluster.
- Cluster 2–1 was characterized by greater water depth, conductivity, turbidity, and chlorophyll-a concentration, as well as a high biomass of submerged macrophyte species (C. demersum, H. verticillata, and N. graminea). Although this cluster supported a high abundance of Lymnaeidae, Physidae, Belostomatidae, Coenagrionidae, and Libellulidae, these invertebrates were not as abundant as they were in clusters 2–2 and 3.
- Cluster 2–2 included sampling sites where S. polyrhiza, T. japonica, and H. dubia were abundant, along with high numbers of Bithyniidae and Coenagrionidae. Sampling sites with high turbidity and chlorophyll-a concentration were also observed in this cluster.
- Cluster 3 contained sites with high biomass of T. orientalis and S. natans. Invertebrate groups, such as Lymnaeidae, Physidae, Viviparidae, Belostomatidae, Ecnomidae, and Hydrophilidae, were present in high abundance.
4.2. Effect of Microhabitats on Invertebrate Distribution
4.3. Management Strategy for Freshwater Ecosystems for Invertebrate Diversity
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heino, J.; Virkkala, R.; Toivonen, H. Climate change and freshwater biodiversity: Detected patterns, future trends and adaptations in northern regions. Biol. Rev. 2009, 84, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Jeong, K.S.; Kim, S.K.; La, G.H.; Chang, K.H.; Joo, G.J. Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecol. Inform. 2014, 24, 177–185. [Google Scholar] [CrossRef]
- Polo-Cavia, N.; López, P.; Martín, J. Interspecific differences in responses to predation risk may confer competitive advantages to invasive freshwater turtle species. Ethology 2008, 114, 115–123. [Google Scholar] [CrossRef]
- Eero, M.; Vinther, M.; Haslob, H.; Huwer, B.; Casini, M.; Storr-Paulsen, M.; Köster, F.W. Spatial management of marine resources can enhance the recovery of predators and avoid local depletion of forage fish. Conserv. Lett. 2012, 5, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Arnan, X.; Gaucherel, C.; Andersen, A.N. Dominance and species co-occurrence in highly diverse ant communities: A test of the interstitial hypothesis and discovery of a three-tiered competition cascade. Oecologia 2011, 166, 783–794. [Google Scholar] [CrossRef]
- Allen, D.C.; Vaughn, C.C. Complex hydraulic and substrate variables limit freshwater mussel species richness and abundance. J. North Am. Benthol. Soc. 2010, 29, 383–394. [Google Scholar] [CrossRef]
- MacNeil, C.; Platvoet, D.; Dick, J.T. Potential roles for differential body size and microhabitat complexity in mediating biotic interactions within invasive freshwater amphipod assemblages. Fundam. Appl. Limnol. 2008, 172, 175. [Google Scholar] [CrossRef]
- Svanbäck, R.; Eklöv, P. Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia 2002, 131, 61–70. [Google Scholar] [CrossRef]
- Christie, H.; Norderhaug, K.M.; Fredriksen, S. Macrophytes as habitat for fauna. Mar. Ecol. Prog. Ser. 2009, 396, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Thomaz, S.M.; Cunha, E.R.D. The role of macrophytes in habitat structuring in aquatic ecosystems: Methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol. Bras. 2010, 22, 218–236. [Google Scholar] [CrossRef]
- Choi, J.Y.; Jeong, K.S.; La, G.H.; Kim, S.K.; Joo, G.J. Sustainment of epiphytic microinvertebrate assemblage in relation with different aquatic plant microhabitats in freshwater wetlands (South Korea). J. Limnol. 2014, 73, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.Y.; Kim, S.K. Responses of rotifer community to microhabitat changes caused by summer-concentrated rainfall in a shallow reservoir, South Korea. Diversity 2020, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, E.; Søndergaard, M.; Søndergaard, M.; Christoffersen, K. (Eds.) The Structuring Role of Submerged Macrophytes in Lakes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 131. [Google Scholar]
- Hempel, M.; Blume, M.; Blindow, I.; Gross, E.M. Epiphytic bacterial community composition on two common submerged macrophytes in brackish water and freshwater. BMC Microbiol. 2008, 8, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Donk, E.; van de Bund, W.J. Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities: Allelopathy versus other mechanisms. Aquat. Bot. 2002, 72, 261–274. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, S.K.; Jeong, K.S.; Joo, G.J. Distribution pattern of epiphytic microcrustaceans in relation to different macrophyte microhabitats in a shallow wetland (Upo wetlands, South Korea). Oceanol. Hydrobiol. Stud. 2015, 44, 151. [Google Scholar] [CrossRef]
- Stahr, K.J.; Kaemingk, M.A. An evaluation of emergent macrophytes and use among groups of aquatic taxa. Lake Reserv. Manag. 2017, 33, 314–323. [Google Scholar] [CrossRef]
- Cazzanelli, M.; Warming, T.P.; Christoffersen, K.S. Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation. Hydrobiologia 2008, 605, 113–122. [Google Scholar] [CrossRef]
- Choi, J.Y.; Jeong, K.S.; La, G.H.; Joo, G.J. Effect of removal of free-floating macrophytes on zooplankton habitat in shallow wetland. Knowl. Manag. Aquat. Ecosyst. 2014, 414, 11. [Google Scholar] [CrossRef] [Green Version]
- Burks, R.L.; Mulderij, G.; Gross, E.; Jones, I.; Jacobsen, L.; Jeppesen, E.; Van Donk, E. Center stage: The crucial role of macrophytes in regulating trophic interactions in shallow lake wetlands. In Wetlands: Functioning, Biodiversity Conservation, and Restoration; Bobbink, R., Beltman, B., Verhoeven, J.T.A., Whigham, D.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 37–59. [Google Scholar]
- Nicolle, A.; Hansson, L.A.; Brönmark, C. Habitat structure and juvenile fish ontogeny shape zooplankton spring dynamics. Hydrobiologia 2010, 652, 119–125. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N.; Joniak, T. Zooplankton diversity and macrophyte biometry in shallow water bodies of various trophic state. Hydrobiologia 2016, 774, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Pastuchová, Z.; Lehotský, M.; Grešková, A. Influence of morphohydraulic habitat structure on invertebrate communities (Ephemeroptera, Plecoptera and Trichoptera). Biologia 2008, 63, 720–729. [Google Scholar] [CrossRef]
- Amaral, P.H.M.D.; Silveira, L.S.D.; Rosa, B.F.J.V.; Oliveira, V.C.D.; Alves, R.D.G. Influence of habitat and land use on the assemblages of Ephemeroptera, Plecoptera, and Trichoptera in neotropical streams. J. Insect Sci. 2015, 15, 60. [Google Scholar] [CrossRef] [Green Version]
- Butler, R.G.; Demaynadier, P.G. The significance of littoral and shoreline habitat integrity to the conservation of lacustrine damselflies (Odonata). J. Insect Conserv. 2008, 12, 23–36. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, S.K.; Kim, J.C.; Kwon, S.J. Habitat preferences and trophic position of Brachydiplax chalybea flavovittata Ris, 1911 (Insecta: Odonata) larvae in Youngsan River wetlands of South Korea. Insects 2020, 11, 273. [Google Scholar] [CrossRef]
- Vasileva, S.Y.; Georgiev, D.G.; Gecheva, G.M. On the communities of freshwater gastropods on aquatic macrophytes in some water basins of southern Bulgaria. Ecol. Balk. 2011, 3, 11–17. [Google Scholar]
- Lusardi, R.A.; Jeffres, C.A.; Moyle, P.B. Stream macrophytes increase invertebrate production and fish habitat utilization in a California stream. River Res. Appl. 2018, 34, 1003–1012. [Google Scholar] [CrossRef]
- Ohtaka, A.; Narita, T.; Kamiya, T.; Katakura, H.; Araki, Y.; Im, S.; Chhay, R.; Tsukawaki, S. Composition of aquatic invertebrates associated with macrophytes in Lake Tonle Sap, Cambodia. Limnology 2011, 12, 137–144. [Google Scholar] [CrossRef]
- Declerck, S.A.; Bakker, E.S.; van Lith, B.; Kersbergen, A.; van Donk, E. Effects of nutrient additions and macrophyte composition on invertebrate community assembly and diversity in experimental ponds. Basic Appl. Ecol. 2011, 12, 466–475. [Google Scholar] [CrossRef]
- De Neiff, A.P.; Carignan, R. Macroinvertebrates on Eichhornia crassipes roots in two lakes of the Paran River floodplain. Hydrobiologia 1997, 345, 185–196. [Google Scholar] [CrossRef]
- Irma, D.; Sofyatuddin, K. Diversity of gastropods and bivalves in mangrove ecosystem rehabilitation areas in Aceh Besar and Banda Aceh districts, Indonesia. Aquac. Aqua. Conserv. Legis. 2012, 5, 55–59. [Google Scholar]
- Wang, H.J.; Pan, B.Z.; Liang, X.M.; Wang, H.Z. Gastropods on submersed macrophytes in Yangtze lakes: Community characteristics and empirical modelling. Int. Rev. Hydrobiol. 2006, 91, 521–538. [Google Scholar] [CrossRef]
- Strong, E.E.; Gargominy, O.; Ponder, W.F.; Bouchet, P. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. In Freshwater Animal Diversity Assessment; Springer: Dordrecht, The Netherlands, 2007; pp. 149–166. [Google Scholar]
- Johnson, P.D.; Bogan, A.E.; Brown, K.M.; Burkhead, N.M.; Cordeiro, J.R.; Garner, J.T.; Hartfield, P.D.; Lepitzki, D.A.W.; Mackie, G.L.; Pip, E.; et al. Conservation status of freshwater gastropods of Canada and the United States. Fisheries 2013, 38, 247–282. [Google Scholar] [CrossRef]
- Jeong, K.S.; Kim, D.K.; Joo, G.J. Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). Water Res. 2007, 41, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Jeong, K.S.; Joo, G.J. Rainfall as dominant driver of rotifer dynamics in shallow wetlands: Evidence from a long-term data record (Upo Wetlands, South Korea). Int. Rev. Hydrobiol. 2015, 100, 21–33. [Google Scholar] [CrossRef]
- Wetzel, R.G.; Likens, G.E. Composition and biomass of phytoplankton. In Limnological Analyses; Springer: New York, NY, USA, 2000; pp. 147–174. [Google Scholar]
- Yoon, I.B. Aquatic Insects of Korea; Jeonghaengsa: Seoul, Korea, 1995. [Google Scholar]
- Kwon, S.J.; Jun, Y.C.; Park, J.H. Benthic Macroinvertebrates; Nature and Ecology: Seoul, Korea, 2013; p. 791. [Google Scholar]
- Kawai, T.; Tanida, K. Aquatic Insects of Japan: Manual with Keys and Illustrations; Tokai University Press: Kanagawa, Japan, 2005. [Google Scholar]
- Kohonen, T. Self-Organizing Maps; Springer: New York, NY, USA, 1997. [Google Scholar]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Odum, H.T. Ecological and General Systems: An Introduction to Systems Ecology; University Press of Colorado: Boulder, CO, USA, 1983. [Google Scholar]
- Chon, T.S.; Park, Y.S.; Moon, K.H.; Cha, E.Y. Patterning communities by using an artificial neural network. Ecol. Model. 1996, 90, 69–78. [Google Scholar] [CrossRef]
- Fielding, A.H. (Ed.) An introduction to machine learning methods. In Machine Learning Methods for Ecological Applications; Springer: Boston, MA, USA, 1999; pp. 1–35. [Google Scholar]
- Kim, S.K.; Kim, J.C.; Joo, G.J.; Choi, J.Y. Response of the rotifer community to human-induced changes in the trophic state of a reservoir. Oceanol. Hydrobiol. Stud. 2020, 49, 329–344. [Google Scholar] [CrossRef]
- Kohonen, T. Essentials of the self-organizing map. Neural Netw. 2013, 37, 52–65. [Google Scholar] [CrossRef]
- Park, Y.S.; Song, M.Y.; Park, Y.C.; Oh, K.H.; Cho, E.; Chon, T.S. Community patterns of benthic macroinvertebrates collected on the national scale in Korea. Ecol. Model. 2007, 203, 26–33. [Google Scholar] [CrossRef]
- Vesanto, J.; Alhoniemi, E. Clustering of the self-organizing map. IEEE Trans. Neural Netw. 2000, 11, 586–600. [Google Scholar] [CrossRef]
- Uriarte, A.; Martín, F.D. Topology preservation in SOM. Int. J. Appl. Math. Comput. Sci. 2005, 1, 19–22. [Google Scholar]
- Cèrèghino, R.; Park, Y.S. Review of the self-organizing map (SOM) approach in water resources: Commentary. Environ. Modell. Softw. 2009, 24, 945–947. [Google Scholar] [CrossRef]
- Briers, R.A.; Biggs, J. Spatial patterns in pond invertebrate communities: Separating environmental and distance effects. Aquat. Conserv. Mar. Freshw. Ecosyst. 2005, 15, 549–557. [Google Scholar] [CrossRef]
- Hanson, M.A.; Bowe, S.E.; Ossman, F.G.; Fieberg, J.; Butler, M.G.; Koch, R. Influences of forest harvest and environmental gradients on aquatic invertebrate communities of seasonal ponds. Wetlands 2009, 29, 884–895. [Google Scholar] [CrossRef]
- Chambers, P.A.; Lacoul, P.; Murphy, K.J.; Thomaz, S.M. Global diversity of aquatic macrophytes in freshwater. In Freshwater Animal Diversity Assessment; Balian, E.V., Lévêque, C., Segers, H., Martens, K., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 9–26. [Google Scholar]
- Xiao, K.; Yu, D.; Wu, Z. Differential effects of water depth and sediment type on clonal growth of the submersed macrophyte Vallisneria natans. Hydrobiologia 2007, 589, 265–272. [Google Scholar] [CrossRef]
- Reitsema, R.E.; Meire, P.; Schoelynck, J. The future of freshwater macrophytes in a changing world: Dissolved organic carbon quantity and quality and its interactions with macrophytes. Front. Plant Sci. 2018, 9, 629. [Google Scholar] [CrossRef]
- Dos Santos, N.G.; Stephan, L.R.; Otero, A.; Iglesias, C.; Castilho-Noll, M.S.M. How free-floating macrophytes influence interactions between planktivorous fish and zooplankton in tropical environments? An in-lake mesocosm approach. Hydrobiologia 2020, 847, 1357–1370. [Google Scholar] [CrossRef]
- Fukui, D.A.I.; Murakami, M.; Nakano, S.; Aoi, T. Effect of emergent aquatic insects on bat foraging in a riparian forest. J. Anim. Ecol. 2006, 75, 1252–1258. [Google Scholar] [CrossRef]
- Xie, Z.; Tang, T.; Ma, K.; Liu, R.; Qu, X.; Chen, J.; Cai, Q. Influence of environmental variables on macroinvertebrates in a macrophyte-dominated Chinese lake, with emphasis on the relationships between macrophyte heterogeneity and macroinvertebrate patterns. J. Freshw. Ecol. 2005, 20, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Brito, J.S.; Michelan, T.S.; Juen, L. Aquatic macrophytes are important substrates for Libellulidae (Odonata) larvae and adults. Limnology 2021, 22, 139–149. [Google Scholar] [CrossRef]
- De Marco, J.P.; Latini, A.O.; Resende, D.C. Thermoregulatory constraints on behavior: Patterns in a Neotropical dragonfly assemblage. Neotrop. Entomol. 2005, 34, 155–162. [Google Scholar] [CrossRef]
- Remsburg, A.J.; Turner, M.G. Aquatic and terrestrial drivers of dragonfly (Odonata) assemblages within and among north-temperate lakes. J. N. Am. Benthol. Soc. 2009, 28, 44–56. [Google Scholar] [CrossRef]
- Iwai, N.; Akasaka, M.; Kadoya, T.; Ishida, S.; Aoki, T.; Higuchi, S.; Takamura, N. Examination of the link between life stages uncovered the mechanisms by which habitat characteristics affect odonates. Ecosphere 2017, 8, e01930. [Google Scholar] [CrossRef]
- Short, F.T.; Kosten, S.; Morgan, P.A.; Malone, S.; Moore, G.E. Impacts of climate change on submerged and emergent wetland plants. Aquat. Bot. 2016, 135, 3–17. [Google Scholar] [CrossRef]
- Peterjohn, W.T.; Correll, D.L. Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest. Ecology 1984, 65, 1466–1475. [Google Scholar] [CrossRef]
- Talling, J.F. Phytoplankton-zooplankton seasonal timing and the ‘clear-water phase’ in some English lakes. Freshw. Biol. 2003, 48, 39–52. [Google Scholar] [CrossRef]
Factors | Variables | Units | Max | Min | Mean ± SD | CV (%) |
---|---|---|---|---|---|---|
Environmental variables | Water depth | cm | 60 | 17 | 46 ± 26.2 | 26.2 |
pH | - | 7.4 | 7.1 | 7.2 ± 0.0 | 0.7 | |
Conductivity | μs cm−1 | 235.1 | 205.6 | 217 ± 6.2 | 2.8 | |
Turbidity | NTU | 27.4 | 14.2 | 21.0 ± 3.4 | 16.1 | |
Chlorophyll-a | μg L−1 | 26.1 | 6.2 | 12.9 ± 3.8 | 29.1 | |
Macrophytes | Paspalum distichum | gdw | 109.5 | 0 | 28.3 ± 27.2 | 95.8 |
Typha orientalis | gdw | 306.4 | 0 | 16.0 ± 64.9 | 404.5 | |
Spirodela polyrhiza | gdw | 7.8 | 0 | 2.0 ± 2.0 | 99.1 | |
Salvinia natans | gdw | 7.1 | 0 | 0.4 ± 1.3 | 360.0 | |
Nelumbo nucifera | gdw | 36.1 | 0 | 10.0 ± 9.8 | 98.9 | |
Trapa japonica | gdw | 26.9 | 0 | 4.3 ± 7.5 | 175.3 | |
Hydrocharis dubia | gdw | 4.7 | 0 | 0.5 ± 1.0 | 183.5 | |
Ceratophyllum demersum | gdw | 2.4 | 0 | 0.5 ± 0.7 | 135.4 | |
Hydrilla verticillata | gdw | 0.8 | 0 | 0.1 ± 0.2 | 208.6 | |
Najas graminea | gdw | 1.3 | 0 | 0.1 ± 0.2 | 307.2 |
Factors | Variables | Clusters | Significance | |||||
---|---|---|---|---|---|---|---|---|
1–1 | 1–2 | 2–1 | 2–2 | 3 | F | p | ||
Environmental variables | Water depth | 48.2 | 35.6 | 56.2 | 48.9 | 45.9 | 3.315 | <0.05 |
pH | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 0.407 | 0.803 | |
Conductivity | 218.4 | 216.7 | 219.7 | 215.5 | 216.8 | 0.468 | 0.759 | |
Turbidity | 21.0 | 20.2 | 23.3 | 23.2 | 19.7 | 2.694 | <0.05 | |
Chlorophyll a | 12.7 | 11.3 | 15.3 | 15.5 | 11.9 | 2.646 | <0.05 | |
Macrophytes | Paspalum distichum | 17.8 | 63.5 | 10.3 | 3.9 | 33.4 | 2.921 | <0.05 |
Typha orientalis | 0 | 89.1 | 0 | 0 | 0 | 4.462 | <0.01 | |
Spirodela polyrhiza | 1.3 | 2.0 | 0.5 | 3.6 | 1.9 | 2.993 | <0.05 | |
Salvinia natans | 0.8 | 1.0 | 0 | 0 | 0.1 | 1.717 | 0.163 | |
Nelumbo nucifera | 4.6 | 5.4 | 12.1 | 6.4 | 16.1 | 0.768 | 0.551 | |
Trapa japonica | 0.6 | 0 | 8.6 | 15.0 | 1.7 | 2.691 | <0.05 | |
Hydrocharis dubia | 0 | 0 | 0.6 | 1.7 | 0.4 | 8.734 | <0.001 | |
Ceratophyllum demersum | 0.2 | 0 | 1.6 | 0.3 | 0.7 | 8.421 | <0.001 | |
Hydrilla verticillata | 0 | 0 | 0.4 | 0 | 0.1 | 7.227 | <0.001 | |
Najas graminea | 0 | 0 | 0.3 | 0.1 | 0.1 | 1.663 | 0.175 | |
Invertebrates | Viviparidae | 0.4 | 1.9 | 0.4 | 0.7 | 2.6 | 5.947 | <0.01 |
Bithyniidae | 0.2 | 0 | 7.0 | 11.8 | 1.8 | 14.534 | <0.001 | |
Lymnaeidae | 2.7 | 5.1 | 9.4 | 5.2 | 14.3 | 2.691 | <0.05 | |
Physidae | 3.7 | 3.2 | 11.2 | 4.0 | 8.8 | 2.921 | <0.05 | |
Planorbidae | 3.3 | 35.3 | 1.6 | 0.7 | 7.6 | 5.456 | <0.01 | |
Coenagrionidae | 0.4 | 0.4 | 1.0 | 1.2 | 0.9 | 0.768 | 0.551 | |
Corduliidae | 0.0 | 0.7 | 0.4 | 0.1 | 0.2 | 1.717 | 0.163 | |
Libellulidae | 0.9 | 1.1 | 4.2 | 0.3 | 1.8 | 3.101 | 0.025 | |
Belostomatidae | 1.9 | 2.2 | 2.6 | 2.0 | 4.1 | 2.512 | 0.055 | |
Hydrophilidae | 0.1 | 1.2 | 0.6 | 0.1 | 0.8 | 3.389 | <0.05 | |
Stratiomyidae | 0 | 0 | 0.8 | 0 | 0.3 | 2.691 | <0.05 | |
Ecnomidae | 0 | 0 | 0 | 0 | 0.6 | 2.432 | 0.061 | |
Pyralidae | 0 | 0.3 | 0.2 | 0.1 | 0.6 | 0.683 | 0.061 |
Season | Algal Groups | Pd | To | Sp | Sn | Nn | Tj | Hd | Cd | Hv | Ng |
---|---|---|---|---|---|---|---|---|---|---|---|
Spring | Chlorophyceae | 41 | 42 | 94 | 112 | 138 | 68 | 89 | 168 | 174 | 135 |
Bacillariophyceae | 87 | 93 | 168 | 189 | 237 | 128 | 116 | 315 | 358 | 345 | |
Cyanophyceae | 43 | 40 | 62 | 84 | 82 | 30 | 75 | 89 | 92 | 94 | |
Euglenophyceae | 31 | 27 | 34 | 38 | 51 | 21 | 46 | 68 | 61 | 72 | |
Chrysophyceae | 16 | 15 | 38 | 42 | 47 | 23 | 56 | 52 | 55 | 64 | |
Synurophyceae | 11 | 15 | 63 | 68 | 62 | 27 | 38 | 31 | 29 | 48 | |
Dinophyceae | 13 | 13 | 81 | 78 | 89 | 18 | 35 | 36 | 32 | 37 | |
Total | 242 | 245 | 540 | 611 | 706 | 315 | 455 | 759 | 801 | 795 | |
Autumn | Chlorophyceae | 56 | 62 | 128 | 168 | 224 | 80 | 93 | 214 | 238 | 246 |
Bacillariophyceae | 97 | 134 | 238 | 259 | 374 | 146 | 138 | 538 | 505 | 186 | |
Cyanophyceae | 51 | 57 | 119 | 98 | 118 | 84 | 92 | 135 | 146 | 124 | |
Euglenophyceae | 31 | 32 | 63 | 54 | 89 | 84 | 79 | 141 | 175 | 132 | |
Chrysophyceae | 23 | 29 | 31 | 35 | 46 | 48 | 70 | 96 | 110 | 74 | |
Synurophyceae | 16 | 20 | 46 | 50 | 52 | 46 | 48 | 78 | 52 | 38 | |
Dinophyceae | 15 | 25 | 34 | 48 | 42 | 20 | 35 | 41 | 35 | 28 | |
Total | 289 | 359 | 659 | 712 | 945 | 508 | 555 | 1243 | 1261 | 828 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, S.-H.; Kwon, S.-J.; Im, J.-H.; Kim, S.-K.; Kong, D.; Choi, J.-Y. Aquatic Macrophytes Determine the Spatial Distribution of Invertebrates in a Shallow Reservoir. Water 2021, 13, 1455. https://doi.org/10.3390/w13111455
Son S-H, Kwon S-J, Im J-H, Kim S-K, Kong D, Choi J-Y. Aquatic Macrophytes Determine the Spatial Distribution of Invertebrates in a Shallow Reservoir. Water. 2021; 13(11):1455. https://doi.org/10.3390/w13111455
Chicago/Turabian StyleSon, Se-Hwan, Soon-Jik Kwon, Ji-Hyeok Im, Seong-Ki Kim, Dongsoo Kong, and Jong-Yun Choi. 2021. "Aquatic Macrophytes Determine the Spatial Distribution of Invertebrates in a Shallow Reservoir" Water 13, no. 11: 1455. https://doi.org/10.3390/w13111455
APA StyleSon, S.-H., Kwon, S.-J., Im, J.-H., Kim, S.-K., Kong, D., & Choi, J.-Y. (2021). Aquatic Macrophytes Determine the Spatial Distribution of Invertebrates in a Shallow Reservoir. Water, 13(11), 1455. https://doi.org/10.3390/w13111455