Daily Fluctuations in the Isotope and Elemental Composition of Tap Water in Ljubljana, Slovenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. In-Situ Measurements and Water Sampling
2.3. Analytical Procedures
2.3.1. Determination of δ2H, δ18O and d-Excess
2.3.2. Determination of δ13CDIC
2.3.3. Determination of Major and Trace Elements
2.3.4. Determination of 87Sr/86Sr Isotope Ratios
2.3.5. Data Evaluation
3. Results and discussion
3.1. δ2H and δ18O in the Tap Water
3.2. δ13CDIC in the Tap Water
3.3. Concentrations of Major and Trace Elements in the Tap Water
- (1)
- Group 1 (Figure 5a): higher values in the beginning and at the end and lower in between (i.e., δ18O, δ13CDIC, Ca, Na, B, Ba, Cr, Li, Sr);
- (2)
- Group 2 (Figure 5b): lower values in the beginning and at the end and higher in between (i.e., K, Mg, As, Mn, V);
- (3)
- Group 3 (Figure 5c): higher values at the beginning of the experiment (i.e., T, Cd, Co, Fe, Ni, Pb, Sb, Zn) with a subgroup showing exponential decrease with time (i.e., Mo, Sb, Tl);
- (4)
- Group 4 (Figure 5d): no specific pattern; (i.e., EC, pH, δ2H, d, Al, Cu, Rb, U).
3.4. Sr/86Sr Isotope Ratio
3.5. Multivariate Statistical Analysis
- (1)
- Parameters with ≤10 correlations (T, EC, d, Al, Co, Cu, Fe, Mo, Pb, Rb, Sb, and Tl);
- (2)
- Parameters with 11 to 19 correlations (pH, δ2H, δ18O, δ13CDIC, Ca, K, As, Li, Ni, and U);
- (3)
- Parameters with 20 and 21 correlations (Mg, Na, B, Ba, Cd, Cr, Mn, Sr, V, and Zn).
3.6. Mixing of Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salvadore, E.; Bronders, J.; Batelaan, O. Hydrological modelling of urbanized catchments: A review and future directions. J. Hydrol. 2015, 529, 62–81. [Google Scholar] [CrossRef]
- Schnoor, J.L. Recognizing Drinking Water Pipes as Community Health Hazards. J. Chem. Educ. 2016, 93, 581–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schirmer, M.; Leschik, S.; Musolff, A. Current research in urban hydrogeology—A review. Adv. Water Resour. 2013, 51, 280–291. [Google Scholar] [CrossRef]
- Jameel, Y.; Brewer, S.; Fiorella, R.P.; Tipple, B.J.; Terry, S.; Bowen, G.J. Isotopic reconnaissance of urban water supply system dynamics. Hydrol. Earth Syst. Sci. 2018, 22, 6109–6125. [Google Scholar] [CrossRef] [Green Version]
- Bowen, G.J.; Cai, Z.; Fiorella, R.P.; Putman, A.L. Isotopes in the Water Cycle: Regional- to Global-Scale Patterns and Applications. Annu. Rev. Earth Planet. Sci. 2019, 47, 453–479. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Hu, H.; Tian, F.; Tie, Q.; Wang, L.; Liu, Y.; Shi, C. Divergence of stable isotopes in tap water across China. Sci. Rep. 2017, 7, 43653. [Google Scholar] [CrossRef] [Green Version]
- De Wet, R.F.; West, A.G.; Harris, C. Seasonal variation in tap water δ2H and δ18O isotopes reveals two tap water worlds. Sci. Rep. 2020, 10, 13544. [Google Scholar] [CrossRef]
- Atekwana, E.; Krishnamurthy, R. Seasonal variations of dissolved inorganic carbon and δ13C of surface waters: Application of a modified gas evolution technique. J. Hydrol. 1998, 205, 265–278. [Google Scholar] [CrossRef]
- Verbovšek, T.; Kanduč, T. Isotope Geochemistry of Groundwater from Fractured Dolomite Aquifers in Central Slovenia. Aquat. Geochem. 2016, 22, 131–151. [Google Scholar] [CrossRef]
- Cartwright, I.; Weaver, T.; Tweed, S.; Ahearne, D.; Cooper, M.; Czapnik, C.; Tranter, J. O, H, C isotope geochemistry of carbonated mineral springs in central Victoria, Australia: Sources of gas and water–rock interaction during dying basaltic volcanism. J. Geochem. Explor. 2000, 69–70, 257–261. [Google Scholar] [CrossRef]
- Ettayfi, N.; Bouchaou, L.; Michelot, J.L.; Tagma, T.; Warner, N.; Boutaleb, S.; Massault, M.; Lgourna, Z.; Vengosh, A. Geochemical and isotopic (oxygen, hydrogen, carbon, strontium) constraints for the origin, salinity, and residence time of groundwater from a carbonate aquifer in the Western Anti-Atlas Mountains, Morocco. J. Hydrol. 2012, 438–439, 97–111. [Google Scholar] [CrossRef]
- Zuliani, T.; Kanduč, T.; Novak, R.; Vreča, P. Characterization of Bottled Waters by Multielemental Analysis, Stable and Radiogenic Isotopes. Water 2020, 12, 2454. [Google Scholar] [CrossRef]
- Chesson, L.A.; Tipple, B.J.; Mackey, G.N.; Hynek, S.A.; Fernandez, D.P.; Ehleringer, J.R. Strontium isotopes in tap water from the coterminous USA. Ecosphere 2012, 3, 67. [Google Scholar] [CrossRef]
- Cloutier, V.; Lefebvre, R.; Therrien, R.; Savard, M.M. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J. Hydrol. 2008, 353, 294–313. [Google Scholar] [CrossRef]
- Jameel, Y.; Brewer, S.; Good, S.P.; Tipple, B.J.; Ehleringer, J.R.; Bowen, G.J. Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area. Water Resour. Res. 2016, 52, 5891–5910. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Zhang, M.; Wang, S.; Chen, F.; Zhao, P.; Zhou, S.; Zhang, Y. Stable Isotope Ratios in Tap Water of a Riverside City in a Semi-Arid Climate: An Application to Water Source Determination. Water 2019, 11, 1441. [Google Scholar] [CrossRef] [Green Version]
- US Environmental Protection Agency. Effects of Water Age on Distribution System Water Quality; EPA: Washington, DC, USA, 2002. [Google Scholar]
- Vrzel, J.; Solomon, D.K.; Željko, B.; Ogrinc, N. The study of the interactions between groundwater and Sava River water in the Ljubljansko polje aquifer system (Slovenia). J. Hydrol. 2018, 556, 384–396. [Google Scholar] [CrossRef]
- Brilly, M.; Jamnik, B.; Drobne, D. Chromium and Atrazine Contamination of The Ljubljansko Polje Aquifer. In Dangerous Pollutants (Xenobiotics) in Urban Water Cycle; NATO Science for Peace and Security Series; Hlavinek, P., Bonacci, O., Marsalek, J., Mahrikova, I., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 207–216. ISBN 978-1-4020-6800-3. [Google Scholar]
- Republic of Slovenia, Ministry of Health. Drinking Water Regulations of 1 March 2004; Official Gazette of the Republic Slovenia: Ljubljana, Slovenia, 2004; Volume 19. [Google Scholar]
- European Parliament; Council of the European Union. Directive EU 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption; Official Journal of the European Communities: Brussels, Belgium, 2020; pp. 1–62. [Google Scholar]
- Mohod, C.V.; Dhote, J. Review of heavy metals in drinking water and their effect on human health. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 5. [Google Scholar]
- Prestor, J.; Jamnik, B.; Pestotnik, S.; Meglič, P.; Cerar, S.; Janža, M.; Auersperger, P.; Bračič-Železnik, B. Upravljanje Onesnaženj Podzemne Vode Na Ravni Funkcionalnega Mestnega Območja. In Proceedings of the Zbornik referatov: Simpozij z mednarodno udeležbo, Ljubljana, Slovenia, 5–6 October 2017; CERKVENIK, Stanka (ur.); ROJNIK, Enisa (ur.): Portorož, Slovenia, 2017; pp. 123–134. [Google Scholar]
- Janža, M.; Prestor, J.; Pestotnik, S.; Jamnik, B. Nitrogen Mass Balance and Pressure Impact Model Applied to an Urban Aquifer. Water 2020, 12, 1171. [Google Scholar] [CrossRef] [Green Version]
- Nagode, K.; Kanduč, T.; Lojen, S.; Železnik, B.B.; Jamnik, B.; Vreča, P. Synthesis of past isotope hydrology investigations in the area of Ljubljana, Slovenia. Geologja 2020, 63, 251–270. [Google Scholar] [CrossRef]
- Vreča, P.; Kanduč, T.; Šlejkovec, Z.; Žigon, S.; Nagode, K.; Močnik, N.; Bračič-Železnik, B.; Jamnik, B.; Žitnik, M. Karakterizacija vodnih virov za javno oskrbo s pitno vodo v Ljubljani s pomočjo različnih geokemičnih analiz. In Raziskave s Področja Geodezije in Geofizike 2018; Kuhar, M., Pavlovčič Prešeren, P., Vreča, P., Eds.; Slovensko združenje za geodezijo in geofiziko: Ljubljana, Slovenia, 2019; pp. 111–119. ISBN 978-961-6884-69-3. [Google Scholar]
- Vreča, P.; Nagode, K.; Zuliani, T.; Lojen, S.; Kanduč, T.; Žigon, S.; Novak, R.; BračičŽeleznik, B.; Jamnik, B.; Žitnik, M. Second Working Report on Multi-Isotope Characterization of Water Resources for Domestic Supply in Ljubljana, Slovenia; Jožef Stefan Institute, Department of Environmental Sciences: Ljubljana, Slovenia, 2019. [Google Scholar]
- Jamnik, B.; Železnik, B.B.; Urbanc, J. Diffuse Pollution of Water Protection Zones in Ljubljana, Slovenia. In Proceedings of the 7th International Specialized Conference on Diffuse Pollution and Basin Management and 36th Scientific Meeting of the Estuarine and Coastal Sciences Association (ECSA), Dublin, Ireland, 17–22 August 2003; pp. 7-1–7-5. [Google Scholar]
- Žlebnik, L. Pleistocen Kranjskega, Sorskega in Ljubljanskega polja. Geologija 1971, 14, 5–51. [Google Scholar]
- Jamnik, B.; Urbanc, J. Izvor in Kakovost Podzemne Vode Ljubljanskega Polja = Origin and Quality of Groundwater from Ljubljansko Polje. RMZ 2000, 47, 167–178. [Google Scholar]
- Vizintin, G.; Souvent, P.; Veselič, M.; Curk, B.C. Determination of urban groundwater pollution in alluvial aquifer using linked process models considering urban water cycle. J. Hydrol. 2009, 377, 261–273. [Google Scholar] [CrossRef]
- Mencej, Z. The Gravel Fill beneath the Lacustrine Sediments of the Ljubljansko Barje. Geologija 1988, 31, 517–553. [Google Scholar]
- Cerar, S.; Urbanc, J. Carbonate Chemistry and Isotope Characteristics of Groundwater of Ljubljansko Polje and Ljubljansko Barje Aquifers in Slovenia. Sci. World J. 2013, 2013, 1–11. [Google Scholar] [CrossRef]
- Jamnik, B.; Žitnik, M. Letno Poročilo o Skladnosti Pitne Vode na Oskrbovalnih Območjih v Upravljanju Javnega Podjetja Vodovod Kanalizacija Snaga d. o. o. v Letu 2019; Javno Podjetje VODOVOD KANALIZACIJA SNAGA d.o.o.: Ljubljna, Slovenia, 2020; p. 27. [Google Scholar]
- Tanweer, A.; Gröning, M.; Van Duren, M.; Jaklitsch, M.; Pöltenstein, L. TEL Technical Note No. 43 Stable Isotope Internal Laboratory Water Standards: Preparation, Calibration and Storage; International Atomic Energy Agency: Vienna, Austria, 2009. [Google Scholar]
- Coplen, T.B.; Wildman, J.D.; Chen, J. Improvements in the gaseous hydrogen-water equilibration technique for hydrogen isotope-ratio analysis. Anal. Chem. 1991, 63, 910–912. [Google Scholar] [CrossRef]
- Epstein, S.A.; Mayeda, T.K. Variation of O18 content of waters from natural sources. Geochim. Cosmochim. Acta 1953, 4, 213–224. [Google Scholar] [CrossRef]
- Avak, H.; Brand, W.A. The Finning MAT HDO-Equilibration—A Fully Automated H2O/Gas Phase Equilibration System for Hydrogen and Oxygen Isotope Analyses. Thermo Electron. Corp. Appl. News 1995, 11, 1–13. [Google Scholar]
- Carter, J.; Barwick, V. Good Practice Guide for Isotope Ratio Mass Spectrometry. FIRMS. 41, 1st ed.; The Forensic Isotope Ratio Mass Spectrometry (FIRMS) Network: Bristol, UK, 2011; Available online: http://www.forensic-isotopes.org/assets/IRMS%20Guide%20Finalv3.1_Web.pdf (accessed on 10 August 2010)ISBN 978-0-948926-31-0.
- Vreča, P.; Žigon, S. Poročilo o Prvi Kalibraciji Laboratorijskih Referenčnih Materialov za Določanje Izotopske Sestave Vodika in Kisika v Vzorcih vod z Masnim Spektrometrom Finnigan MAT DELTA Plus; IJS-DP-12137; Jožef Stefan Institute, Department of Environmental Sciences: Ljubljana, Slovenia, 2016. [Google Scholar]
- Vreča, P.; Žigon, S. Poročilo o Drugi Kalibraciji Laboratorijskih Referenčnih Materialov Za Določanje Izotopske Sestave Vodika in Kisika v Vzorcih Vod z Masnim Spektrometrom Finnigan MAT DELTA Plus; IJS_DP-12138; Jožef Stefan Institute, Department of Environmental Sciences: Ljubljana, Slovenia, 2016. [Google Scholar]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Miyajima, T.; Hanba, Y.T.; Yoshii, K.; Koitabashi, T.; Wada, E. Determining the stable isotope ratio of total dissolved inorganic carbon in lake water by GC/C/IIRMS. Limnol. Oceanogr. 1995, 40, 994–1000. [Google Scholar] [CrossRef]
- Spötl, C. A robust and fast method of sampling and analysis of δ13C of dissolved inorganic carbon in ground waters. Isot. Environ. Health Stud. 2005, 41, 217–221. [Google Scholar] [CrossRef]
- Grafični Pregled Rezultatov Občasnih Preskušanj Pitne Vode. Available online: https://www.vokasnaga.si/informacije/kaksno-vodo-pijemo/pregled-obcasnih-preskusanj-pitne-vode-v-prostoru (accessed on 12 November 2020).
- United States Environmental Protection Agency. Ground Water and Drinking Water. Available online: https://www.epa.gov/ground-water-and-drinking-water (accessed on 5 August 2020).
- WHO. Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Van Der Aa, M. Classification of mineral water types and comparison with drinking water standards. Environ. Geol. 2003, 44, 554–563. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Zhang, M.; Wang, S.; Meng, H.; Che, C.; Guo, R. Stable Isotope Reveals Tap Water Source under Different Water Supply Modes in the Eastern Margin of the Qinghai–Tibet Plateau. Water 2019, 11, 2578. [Google Scholar] [CrossRef] [Green Version]
- Vreča, P.; Malenšek, N. Slovenian Network of Isotopes in Precipitation (SLONIP)—A review of activities in the period 1981–2015. Geologija 2016, 59, 67–84. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
Mean | SD | Min | Max | Range | CV (%) | SI 1 | EU 2 | US EPA 3 | WHO 4 | |
---|---|---|---|---|---|---|---|---|---|---|
T [°C] | 14.1 | 0.59 | 13.5 | 18.9 | 5.4 | 7.0 | n.d. | n.d. | n.d. | n.d. |
EC [µS/cm] | 344 | 7.0 | 325 | 355 | 30 | 2.1 | 2500 | 2500 | n.d. | n.d. |
pH | 7.43 | 0.09 | 7.10 | 7.61 | 0.51 | 0.9 | 6.5–9.5 | 6.5–9.5 | 6.5–8.5 | n.d. |
δ2H [‰] | −61.6 | 0.2 | −62.0 | −61.1 | 0.9 | |||||
δ18O [‰] | −9.26 | 0.02 | −9.30 | −9.22 | 0.08 | |||||
d [‰] | 12.5 | 0.3 | 12.2 | 13.3 | 1.1 | |||||
δ13CDIC [‰] | −11.9 | 0.2 | −12.1 | −11.4 | 0.7 | |||||
Ca [mg/L] | 64.4 | 3.11 | 59.5 | 70.7 | 11.2 | 4.8 | n.d. | n.d. | n.d. | n.d. |
K [mg/L] | 0.884 | 0.125 | 0.645 | 1.11 | 0.465 | 14.2 | n.d. | n.d. | n.d. | n.d. |
Mg [mg/L] | 23.3 | 3.48 | 16.1 | 26.9 | 10.8 | 15.0 | n.d. | n.d. | n.d. | n.d. |
Na [mg/L] | 2.98 | 0.836 | 1.79 | 4.58 | 2.79 | 28.1 | 200 | 200 | n.d. | n.d. |
Al [µg/L] | 1.93 | 0.283 | 1.56 | 2.94 | 1.38 | 14.7 | 200 | 200 | 50–200 | 100–200 |
As [µg/L] | 0.150 | 0.025 | 0.099 | 0.184 | 0.085 | 16.4 | 10 | 10 | 10 | 10 |
B [µg/L] | 10.9 | 2.84 | 7.20 | 17.7 | 10.5 | 26.0 | 1000 | 1000 | n.d. | 2400 |
Ba [µg/L] | 22.1 | 4.99 | 15.7 | 32.0 | 16.3 | 22.6 | n.d. | n.d. | 2000 | 1300 |
Cd [µg/L] | 0.0064 | 0.0012 | 0.0043 | 0.0096 | 0.0053 | 18.6 | 5 | 5 | 5 | 3 |
Co [µg/L] | 0.0111 | 0.0013 | 0.0091 | 0.0147 | 0.0111 | 12.0 | n.d. | n.d. | n.d. | n.d. |
Cr [µg/L] | 0.651 | 0.096 | 0.504 | 0.859 | 0.355 | 14.7 | 50 | 50 | 100 | 50 |
Cu [µg/L] | 2.60 | 0.486 | 1.67 | 3.49 | 1.82 | 18.7 | 2000 | 2000 | 1300 | 2000 |
Fe [µg/L] | 0.970 | 0.631 | 0.588 | 3.73 | 3.14 | 65.1 | 200 | 200 | 300 | n.d. |
Li [µg/L] | 0.528 | 0.171 | 0.320 | 0.857 | 0.537 | 32.4 | n.d. | n.d. | n.d. | n.d. |
Mn [µg/L] | 0.437 | 0.093 | 0.240 | 0.566 | 0.326 | 21.3 | 50 | 50 | 50 | n.d. |
Mo [µg/L] | 0.093 | 0.031 | 0.065 | 0.165 | 0.100 | 33.5 | n.d. | n.d. | n.d. | 70 |
Ni [µg/L] | 0.424 | 0.445 | 0.247 | 2.51 | 2.26 | 104.8 | 20 | 20 | n.d. | 70 |
Pb [µg/L] | 0.310 | 0.121 | 0.249 | 0.834 | 0.585 | 39.0 | 10 | 10 | 15 | 10 |
Rb [µg/L] | 0.606 | 0.019 | 0.555 | 0.624 | 0.069 | 3.1 | n.d. | n.d. | n.d. | n.d. |
Sb [µg/L] | 0.068 | 0.014 | 0.054 | 0.099 | 0.045 | 20.2 | 5 | 5 | 6 | 20 |
Sr [µg/L] | 98.1 | 27.2 | 65.2 | 157 | 91.8 | 27.7 | n.d. | n.d. | n.d. | n.d. |
Tl [µg/L] | 0.0021 | 0.0005 | 0.0013 | 0.0031 | 0.0018 | 22.7 | n.d. | n.d. | 2 | n.d. |
U [µg/L] | 0.411 | 0.017 | 0.367 | 0.442 | 0.075 | 4.0 | n.d. | n.d. | n.d. | 30 |
V [µg/L] | 0.301 | 0.079 | 0.142 | 0.420 | 0.278 | 26.4 | n.d. | n.d. | n.d. | n.d. |
Zn [µg/L] | 25.7 | 5.61 | 20.7 | 51.1 | 30.4 | 21.8 | n.d. | n.d. | 5000 | n.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagode, K.; Kanduč, T.; Zuliani, T.; Bračič Železnik, B.; Jamnik, B.; Vreča, P. Daily Fluctuations in the Isotope and Elemental Composition of Tap Water in Ljubljana, Slovenia. Water 2021, 13, 1451. https://doi.org/10.3390/w13111451
Nagode K, Kanduč T, Zuliani T, Bračič Železnik B, Jamnik B, Vreča P. Daily Fluctuations in the Isotope and Elemental Composition of Tap Water in Ljubljana, Slovenia. Water. 2021; 13(11):1451. https://doi.org/10.3390/w13111451
Chicago/Turabian StyleNagode, Klara, Tjaša Kanduč, Tea Zuliani, Branka Bračič Železnik, Brigita Jamnik, and Polona Vreča. 2021. "Daily Fluctuations in the Isotope and Elemental Composition of Tap Water in Ljubljana, Slovenia" Water 13, no. 11: 1451. https://doi.org/10.3390/w13111451
APA StyleNagode, K., Kanduč, T., Zuliani, T., Bračič Železnik, B., Jamnik, B., & Vreča, P. (2021). Daily Fluctuations in the Isotope and Elemental Composition of Tap Water in Ljubljana, Slovenia. Water, 13(11), 1451. https://doi.org/10.3390/w13111451