Determination of Evaporative Fluxes Using a Bench-Scale Atmosphere Simulator
Abstract
:1. Introduction
2. Design and Operation of the BAS
3. Research Methodology
4. Results and Discussion
5. Summary and Conclusions
- All of the measured data achieved the target values for the various parameters and the data were found to be stable during the 3-h test duration. The slight downward trend in air humidity with respect to the target value is attributed to interferences with the unregulated laboratory humidity.
- The vapour flux was found to have large variation during summer (0.120 g∙s−1∙m−2 during the day and 0.047 g∙s−1∙m−2 at night), low variation during spring (0.116 g∙s−1∙m−2 during the day and 0.062 g∙s−1∙m−2 at night), and negligible change during fall (0.100 g∙s−1∙m−2 during the day and 0.076 g∙s−1∙m−2 at night).
- The measured vapour flux was generally within one standard deviation of the equality line when compared with that predicted by both the mass-transfer equations and the combination equations. The underestimated predictions are attributed to a downscaled air velocity in the simulator and/or the selected constants in the empirical equations.
- The average evaporation ranged from 4 mm∙d−1 to 8 mm∙d−1 during the day and decreased to 1 mm∙d−1 to 3 mm∙d−1 at night. The 24-h evaporation was found to be 8 ± 1 mm∙d−1 from late April through late October. Likewise, the cumulative annual evaporation was found to be 1781 mm, of which 82% occurs during the day and 18% at night.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Labedzki, L. Evapotranspiration; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N.; Klingenberg, D.J. Introductory Transport Phenomena; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Shoko, C.; Dube, T.; Clark, D. Total evaporation estimation for accurate water accounting purposes: An appraisal of various available estimation methods. Geocarto. Int. 2017, 32, 1333–1351. [Google Scholar] [CrossRef]
- Finch, J.W.; Hall, R.L. Estimation of Open Water Evaporation: A Review of Methods; Environment Agency: Bristol, UK, 2001.
- Shuttleworth, W.J. Evaporation. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill Inc.: New York, NY, USA, 1993; pp. 4.1–4.53. [Google Scholar]
- Finch, J.W.; Calver, A. Methods for the Quantification of Evaporation from Lakes; Centre for Ecology & Hydrology: Oxfordshire, UK, 2008. [Google Scholar]
- Sartori, E. A critical review on equations employed for the calculation of the evaporation rate from free water surfaces. Sol. Energy 2000, 68, 77–89. [Google Scholar] [CrossRef]
- Yihdego, Y.; Webb, J.A. Comparison of evaporation rate on open water bodies: Energy balance estimate versus measured pan. J. Water Clim. Change 2018, 9, 101–111. [Google Scholar] [CrossRef]
- Trautz, A.C.; Illangasekare, T.H.; Howington, S. Experimental Testing Scale Considerations for the Investigation of Bare-Soil Evaporation Dynamics in the Presence of Sustained Above-Ground Airflow. Water Resour. Res. 2018, 54, 8963–8982. [Google Scholar] [CrossRef]
- Faurès, J.M.; Hoogeveen, J.; Winpenny, J.; Steduto, P.; Burke, J. Coping with Water Scarcity: An Action Framework for Agriculture and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Akhter, A.; Azam, S. Flood-Drought Hazard Assessment for a Flat Clayey Deposit in the Canadian Prairies. J. Environ. Inform. Lett. 2019, 1, 8–19. [Google Scholar] [CrossRef]
- Fang, X.; Pomeroy, J.W. Drought impacts on Canadian prairie wetland snow hydrology. Hydrol. Process. 2008, 22, 2858–2873. [Google Scholar] [CrossRef]
- Cutlac, I.-M.; Horbulyk, T. Optimal Water Allocation under Short-Run Water Scarcity in the South Saskatchewan River Basin. J. Water Resour. Plan. Manag. 2011, 137, 92–100. [Google Scholar] [CrossRef]
- Wheater, H.; Gober, P. Water security in the Canadian Prairies: Science and management challenges. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120409. [Google Scholar] [CrossRef]
- Ottenbreit, G. Water Security Agency: Plan for 2020–2021; Water Security Agency: Moose Jaw, SK, Canada, 2020. [Google Scholar]
- Lemmen, D.S.; Vance, R.E.; Campbell, I.A.; David, P.P.; Pennock, D.J.; Sauchyn, D.J.; Wolfe, S.A. Geomorphic Systems of the Palliser Triangle, Southern Canadian Prairies: Description and Response to Changing Climate; Natural Resources Canada/ESS/Scientific and Technical Publishing Services: Ottawa, ON, Canada, 1998. [Google Scholar]
- Pomeroy, J.W.; Shook, K.R. Review of Lake Diefenbaker Operations 2010–2011; Centre for Hydrology, University of Saskatchewan: Saskatoon, SK, Canada, 2012. [Google Scholar]
- Martin, F. Gross Evaporation for the 30-Year Period 1971–2000 in the Canadian Prairies; Hydrology Report #143; Prairie Farm Rehabilitation Administration: Regina, SK, Canada, 2002. [Google Scholar]
- Saskatchewan Watershed Authority (SWA). Lake Diefenbaker Reservoir Operations: Context and Objectives; Hydrology and Groundwater Services: Swift Current, SK, Canada, 2012. [Google Scholar]
- Western Economic Diversification Canada (WD). Prairie Prosperity: A Vision for the Management of Water Resources across Saskatchewan and the Prairies; Western Economic Diversification Canada: Edmonton, AB, Canada, 2020. [Google Scholar]
- Ito, M.; Azam, S. Feasibility of Saline Gradient Solar Ponds as Thermal Energy Sources in Saskatchewan, Canada. J. Environ. Inform. Lett. 2019, 1, 72–80. [Google Scholar] [CrossRef]
- Schmugge, T.; Andre, J.C. Land Surface Evaporation; Springer: New York, NY, USA, 1991. [Google Scholar]
- Seo, Y. Effect of hydraulic diameter of flow straighteners on turbulence intensity in square wind tunnel. HVAC Res. 2013, 19, 141–147. [Google Scholar]
- Komatsu, T.S. Toward a Robust Phenomenological Expression of Evaporation Efficiency for Unsaturated Soil Surfaces. J. Appl. Meteorol. 2003, 42, 1330–1334. [Google Scholar] [CrossRef]
- An, N.; Hemmati, S.; Cui, Y.-J. Assessment of the methods for determining net radiation at different time-scales of meteorological variables. J. Rock Mech. Geotech. Eng. 2017, 9, 239–246. [Google Scholar] [CrossRef]
- Mort, K.W.; Eckert, W.T.; Kelly, M.W. The steady-state flow quality of an open return wind tunnel model. Can. Aeronaut. Space J. 1972, 18, 285–289. [Google Scholar]
- Schneider, K.; Ippisch, O.; Roth, K. Novel evaporation experiment to determine soil hydraulic properties. Hydrol. Earth Syst. Sci. 2006, 10, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Wickern, G.; Von Heesen, W.; Wallmann, S. Wind Tunnel Pulsations and their Active Suppression. SAE Tech. Pap. Ser. 2000, 109, 1403–1416. [Google Scholar] [CrossRef]
- Teng, J.; Yasufuku, N.; Zhang, S.; He, Y. Modelling water content redistribution during evaporation from sandy soil in the presence of water table. Comput. Geotech. 2016, 75, 210–224. [Google Scholar] [CrossRef]
- Lozada, C.; Caicedo, B.; Thorel, L. A new climatic chamber for studying soil–atmosphere interaction in physical models. Int. J. Phys. Model. Geotech. 2019, 19, 286–304. [Google Scholar] [CrossRef]
- Salam, R.A.; Munir, M.M.; Warsahemas, T.; Saputra, C.; Latief, H.; Khairurrijal, K. A simple solar simulator with highly stable controlled irradiance for solar panel characterization. Meas. Control. 2019, 52, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Rezek, G. Suction vs. Pressure Forced Air Cooling-Part II. IEEE Trans. Parts Mater. Packag. 2004, 2, 35–43. [Google Scholar] [CrossRef]
- İnan, M.; Atayilmaz, Ö.S. Experimental investigation of evaporation from a horizontal free water surface. Sigma J. Eng. Nat. Sci. 2017, 35, 119–131. [Google Scholar]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained; Wiley: New York, NY, USA, 2010. [Google Scholar]
- Snyder, R.L. Humidity Conversion; UC Davis Biometeorology Group: Davis, CA, USA, 2005. [Google Scholar]
- Hulley, G. MYD21A2 MODIS/Aqua Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1 km SIN Grid V006; NASA EOSDIS Land Processes DAAC: Oak Ridge, TN, USA, 2017.
- Mohamed, A.A.; Sasaki, T.; Watanabe, K. Solute Transport through Unsaturated Soil due to Evaporation. J. Environ. Eng. 2000, 126, 842–848. [Google Scholar] [CrossRef]
- Stannard, D.I.; Rosenberry, D.O.; Winter, T.C.; Parkhurst, R.S. Estimates of fetch-induced errors in Bowen-ratio energy-budget measurements of evapotranspiration from a prairie wetland, Cottonwood Lake Area, North Dakota, USA. Wetlands 2004, 24, 498–513. [Google Scholar] [CrossRef]
- Patel, S.S.; Rix, A.J. The Impact of Water Surface Albedo on Incident Solar Insolation of a Collector Surface. In Proceedings of the 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa, 29–31 January 2020; pp. 1–6. [Google Scholar]
- Finch, J.W. A comparison between measured and modelled open water evaporation from a reservoir in south-east England. Hydrol. Process. 2001, 15, 2771–2778. [Google Scholar] [CrossRef]
- Lawrence, M.G. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–234. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [Green Version]
- Granger, R.; Gray, D. Evaporation from natural nonsaturated surfaces. J. Hydrol. 1989, 111, 21–29. [Google Scholar] [CrossRef]
- Singh, V.P.; Xu, C. Evaluation and generalization of 13 mass-transfer equations for determining free water evapo-ration. Hydrol. Process. 1997, 11, 311–323. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. In Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character; The Royal Society: London, UK, 1948; Volume 193, pp. 120–145. [Google Scholar]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar]
- Himus, G.W.; Hinchley, J.W. The effect of a current of air on the rate of evaporation of water below the boiling point. J. Soc. Chem. Ind. 2007, 43, 840–845. [Google Scholar] [CrossRef]
- Meyer, A.F. Evaporation from Lakes and Reservoirs; Minnesota Resources Commission: St. Paul, MN, USA, 1942. [Google Scholar]
- De Bruin, H.A.R.; Keijman, J.Q. The Priestley-Taylor Evaporation Model Applied to a Large, Shallow Lake in the Netherlands. J. Appl. Meteorol. 1979, 18, 898–903. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Bastiaanssen, W.G.M. Evaluation of three energy balance-based evaporation models for estimating monthly evaporation for five lakes using derived heat storage changes from a hysteresis model. Environ. Res. Lett. 2017, 12, 024005. [Google Scholar] [CrossRef] [Green Version]
- Parsons, G.F.; Kulshreshtha, S.; Pentland, R.; Toma, D.; Hill, D.; McDonald, D.; Vogelsang, G.; Kent, D.; Schneider, K.; Thorp, T. The Economic, Social and Environmental Benefits of Expanding Irrigation in the Lake Diefenbaker Region; Saskatchewan Irrigation Projects Association: Central Butte, SK, Canada, 2008. [Google Scholar]
- Abtew, W.; Melesse, A. Evaporation and Evapotranspiration; Springer: New York, NY, USA, 2013. [Google Scholar]
Weather. Scenario | Date Range (Day Number) | Duration (Hours) | Air Velocity (m∙s−1) a | Air Humidity (g∙m−3) b | Air Temperature (°C) | Solar Irradiance (W∙m−2) c | Surface Temperature (°C) |
---|---|---|---|---|---|---|---|
Day | 84–334 | 3706 | |||||
Spring | 94–149 | 883 | 1.7 | 5.0 | 10.0 | 325 | 11.8 |
Summer | 150–254 | 1755 | 1.3 | 9.0 | 19.0 | 325 | 21.8 |
Fall | 261–304 | 541 | 1.6 | 5.0 | 9.0 | 210 | 12.9 |
Night | 110–317 | 1827 | |||||
Spring | 122–148 | 206 | 1.3 | 5.0 | 9.0 | 0 | 6.1 |
Summer | 149–253 | 761 | 1.3 | 8.5 | 13.0 | 0 | 16.5 |
Fall | 254–279 | 277 | 1.5 | 5.5 | 9.0 | 0 | 15.9 |
Parameter | Unit | Symbol | Weather Scenario | |||||
---|---|---|---|---|---|---|---|---|
Day | Night | |||||||
Spring | Summer | Fall | Spring | Summer | Fall | |||
Atmosphere | ||||||||
Momentum | ||||||||
Velocity | m∙s−1 | 1.7 ± 0.0 | 1.3 ± 0.0 | 1.6 ± 0.0 | 1.3 ± 0.0 | 1.3 ± 0.0 | 1.5 ± 0.0 | |
Mass | ||||||||
Air Pressure | Pa | 93,612 ± 3 | 96,279 ± 5 | 93,182 ± 2 | 96,302 ± 3 | 94,065 ± 4 | 92,853 ± 2 | |
Relative Humidity | ||||||||
Upwind, High | % | 34.0 ± 0.0 | 46.6 ± 0.1 | 37.9 ± 0.0 | 40.9 ± 0.1 | 59.1 ± 0.1 | 43.0 ± 0.0 | |
Downwind, High | % | 41.9 ± 0.0 | 47.4 ± 0.1 | 44.3 ± 0.0 | 44.1 ± 0.1 | 63.4 ± 0.1 | 46.4 ± 0.0 | |
Upwind, Low | % | 48.0 ± 0.1 | 51.2 ± 0.1 | 49.7 ± 0.1 | 53.6 ± 0.1 | 70.5 ± 0.1 | 52.9 ± 0.0 | |
Downwind, Low | % | 59.2 ± 0.1 | 55.0 ± 0.1 | 59.0 ± 0.1 | 62.9 ± 0.2 | 78.4 ± 0.1 | 60.0 ± 0.0 | |
Energy | ||||||||
Temperature | ||||||||
Upwind, High | °C | 16.3 ± 0.0 | 21.4 ± 0.0 | 15.2 ± 0.0 | 12.9 ± 0.0 | 15.5 ± 0.0 | 14.8 ± 0.0 | |
Downwind, High | °C | 13.4 ± 0.0 | 20.8 ± 0.0 | 12.6 ± 0.0 | 11.9 ± 0.0 | 14.7 ± 0.0 | 13.6 ± 0.0 | |
Upwind, Low | °C | 11.3 ± 0.0 | 19.5 ± 0.0 | 10.4 ± 0.0 | 9.6 ± 0.0 | 13.6 ± 0.0 | 11.1 ± 0.0 | |
Downwind, Low | °C | 9.3 ± 0.0 | 18.9 ± 0.0 | 8.7 ± 0.0 | 8.3 ± 0.0 | 12.7 ± 0.0 | 10.1 ± 0.0 | |
Shortwave Flux (↓) | W∙m−2 | 325 ± 0 | 325 ± 0 | 210 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | |
Surface | ||||||||
Mass | ||||||||
Rate of Mass Change | g∙s−1 | 17.5 × 10−3 ± 0 | 18.1 × 10−3 ± 0 | 15.1 × 10−3 ± 0 | 9.32 × 10−3 ± 0 | 7.08 × 10−3 ± 0 | 14.4 × 10−3 ± 0 | |
Coefficient of Determination a | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | ||
Energy | ||||||||
Shortwave Flux (↑) | W∙m−2 | 1 ± 0 | 1 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | |
Temperature | °C | 15 ± 0 | 18 ± 0 | 10 ± 0 | 7 ± 0 | 11 ± 0 | 9 ± 0 |
Parameter | Unit | Symbol | Weather Scenario | |||||
---|---|---|---|---|---|---|---|---|
Day | Night | |||||||
Spring | Summer | Fall | Spring | Summer | Fall | |||
Atmosphere | ||||||||
Momentum | ||||||||
Aerodynamic Resistance | s∙m−1 | 41.4 | 46.6 | 42.7 | 46.9 | 46.7 | 43.9 | |
Mass | ||||||||
Vapour Density | g∙m−3 | 5.1 | 8.8 | 5.0 | 5.1 | 8.5 | 5.5 | |
Vapour Pressure | ||||||||
Partial | Pa | 668 | 1182 | 646 | 666 | 1125 | 721 | |
Saturated | Pa | 1256 | 2229 | 1196 | 1148 | 1514 | 1280 | |
Deficit | Pa | 588 | 1047 | 549 | 483 | 389 | 559 | |
Energy | ||||||||
Longwave Flux (↓) | J∙s−1∙m−2 | 285 | 339 | 282 | 280 | 315 | 288 | |
Surface | ||||||||
Mass | ||||||||
Vapour Pressure | ||||||||
Saturated | Pa | 1705 | 2080 | 1205 | 992 | 1315 | 1160 | |
Deficit | Pa | 1037 | 898 | 559 | 353 | 190 | 439 | |
Energy | ||||||||
Longwave Flux (↑) | J∙s−1∙m−2 | 383 | 400 | 356 | 326 | 362 | 353 | |
Net Radiant Heat Flux | J∙s−1∙m−2 | 226 | 264 | 136 | −61 | −48 | −64 | |
Evaporative Heat Flux | J∙s−1∙m−2 | 287 | 294 | 247 | 153 | 115 | 187 | |
Sensible Heat Flux | J∙s−1∙m−2 | 41 | −43 | −57 | −94 | −87 | −86 | |
Ground Heat Flux | J∙s−1∙m−2 | −101 | 12 | −55 | −131 | −79 | −166 | |
Available Energy | J∙s−1∙m−2 | 328 | 252 | 241 | 67 | 30 | 102 | |
Vapour Flux | g∙s−1∙m−2 | 0.116 | 0.120 | 0.100 | 0.062 | 0.047 | 0.076 |
Reference and Type | RMSE | R2 | SI | Vapour Flux Equation (g∙m−2∙s−1) |
---|---|---|---|---|
[48], Mass-Transfer | 0.028 | 0.90 | 0.33 | |
[49], Mass-Transfer | 0.022 | 0.92 | 0.25 | |
[46], Mass-Transfer | 0.020 | 0.91 | 0.24 | |
[47], Combination | 0.011 | 0.99 | 0.12 | |
[50], Combination | 0.027 | 0.93 | 0.31 | |
[51], Combination | 0.028 | 0.93 | 0.33 |
Cumulative Evaporation | Amount (mm) and Percent Error from BAS | ||
---|---|---|---|
BAS | Meyer | Monteith | |
Annual | 1781 | 1517 (−15%) | 1711 (−4%) |
Day | 1459 | 1321 (−9%) | 1457 (0%) |
Night | 322 | 196 (−39%) | 254 (−27%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchan, J.; Azam, S. Determination of Evaporative Fluxes Using a Bench-Scale Atmosphere Simulator. Water 2021, 13, 84. https://doi.org/10.3390/w13010084
Suchan J, Azam S. Determination of Evaporative Fluxes Using a Bench-Scale Atmosphere Simulator. Water. 2021; 13(1):84. https://doi.org/10.3390/w13010084
Chicago/Turabian StyleSuchan, Jared, and Shahid Azam. 2021. "Determination of Evaporative Fluxes Using a Bench-Scale Atmosphere Simulator" Water 13, no. 1: 84. https://doi.org/10.3390/w13010084
APA StyleSuchan, J., & Azam, S. (2021). Determination of Evaporative Fluxes Using a Bench-Scale Atmosphere Simulator. Water, 13(1), 84. https://doi.org/10.3390/w13010084