The Suspected Contradictory Role of Parental Care in the Adaption of Planktonic Calanoida to Temporary Freshwater
Abstract
1. Introduction
2. Reproductive Traits Typical of Freshwater Calanoida
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Walter, T.C.; Boxshall, G.; World of Copepods Database. World Register of Marine Species. 2020. Available online: http://www.marinespecies.org/aphia.php?p=taxdetails&id=149688 (accessed on 12 September 2020).
- Boxshall, G.A.; Jaume, D. Making Waves: The Repeated Colonization of Fresh Water by Copepod Crustaceans. Adv. Ecol. Res. 2000, 31, 61–79. [Google Scholar]
- Razouls, C.; de Bovée, F.; Kouwenberg, J.; Desremaux, N. Diversity and Geographic Distribution of Marine Planktonic Copepods. 2005–2020. Available online: http://copepodes.obs-banyuls.fr/en (accessed on 31 January 2020).
- Blędzki, L.A.; Rybak, J.I. Freshwater Crustacean Zooplankton of Europe; Springer: Cham, Switzerland, 2016; p. 923. [Google Scholar]
- Belmonte, G. Calanoida (Crustacea: Copepoda) of the Italian fauna: A review. Eur. Zool. J. 2018, 85, 274–290. [Google Scholar] [CrossRef]
- Suarez-Morales, E.; Reid, J.W. An updated list of the free-living freshwater copepods (Crustacea) of Mexico. Southwest. Nat. 1998, 43, 256–265. [Google Scholar]
- Bruno, M.C.; Reid, J.W.; Perry, S.A. A list and identification key for the freshwater, free-living copepods of Florida (U.S.A.). J. Crustacean Biol. 2005, 25, 384–400. [Google Scholar] [CrossRef]
- Lim, R.P.; Fernando, C.H. A review of Malaysian freshwater Copepoda with notes on new records and little known species. Hydrobiologia 1985, 128, 71–89. [Google Scholar] [CrossRef]
- Pinel-Alloul, B.; André, A.; Legendre, P.; Cardille, A.J.; Patalas, K.; Salki, A. Large-scale geographic patterns of diversity and community structure of pelagic crustacean zooplankton in Canadian lakes. Glob. Ecol. Biogeogr. 2013, 22, 784–795. [Google Scholar] [CrossRef]
- Couture, S.; Hudon, C.; Gagnon, P.; Taranu, Z.; Pinel-Alloul, B.; Houle, D.; Aldamman, L.; Beauvais, C.; Lachapelle, M. Zooplankton communities in Precambrian Shield lakes (Quebec, Canada): Responses to spatial and temporal gradients in water chemistry and climate. Can. J. Fish. Aquat. Sci. 2020. In Press. [Google Scholar] [CrossRef]
- Belmonte, G. Species richness in isolated environments: A consideration of the effect of time. Biodivers. J. 2012, 3, 273–280. [Google Scholar]
- Belmonte, G.; Rubino, F. Resting cysts from coastal marine plankton. Oceanogr. Mar. Biol. Annu. Rev. 2019, 57, 1–88. [Google Scholar]
- Williams-Howze, J. Dormancy in free living copepod orders Cyclopoida, Calanoida, and Harpacticoida. Oceanogr. Mar. Biol. Annu. Rev. 1997, 35, 257–321. [Google Scholar]
- Alekseev, V.R. Diapausa Rakoobrashik. Ekologo Physiologicheskie Aspecti; Nauka Moskva: Moscow, Russis, 2019; pp. 1–144. (In Russian) [Google Scholar]
- Ianora, A. Copepod life history traits in subtemperate regions. J. Mar. Syst. 1998, 15, 337–349. [Google Scholar] [CrossRef]
- Belmonte, G. Diapause egg production in Acartia (Paracartia) latisetosa (Crustacea, Copepoda, Calanoida). Boll. Di Zool. 1992, 59, 363–366. [Google Scholar] [CrossRef]
- Belmonte, G. Pteracartia a new genus of Acartiidae (Calanoida, Diaptomoidea) for Acartia josephinae Crisafi, 1974. J. Mar. Syst. 1998, 15, 359–368. [Google Scholar] [CrossRef]
- Hirst, A.G.; Kiørboe, T. Mortality of marine planktonic copepods: Global rates and patterns. Mar. Ecol. Prog. Ser. 2002, 230, 195–209. [Google Scholar] [CrossRef]
- Berger, I.; Maier, G. The mating and reproductive biology of the freshwater planktonic calanoid copepod Eudiaptomus Gracilis. Freshw. Biol. 2001, 46, 787–794. [Google Scholar] [CrossRef]
- Gauld, D.T. Copulation in calanoid copepods. Nature 1957, 180, 510. [Google Scholar] [CrossRef]
- Jersabeck, C.D.; Luger, M.S.; Schabetsberger, R.; Grill, S.; Strickler, J.R. Hang on or run? Copepod mating versus predation risk in contrasting environments. Oecologia 2007, 153, 761–773. [Google Scholar] [CrossRef]
- Ohtsuka, S.; Huys, R. Sexual dimorphism in calanoid copepods: Morphology and function. Hydrobiologia 2001, 453, 441–466. [Google Scholar] [CrossRef]
- Ali, A.K.; Primicerio, R.; Folstad, I.; Liljedal, S.; Berge, J. Morphological correlates of mating frequency and clutch size in wild caught female Eudiaptomus graciloides (Copepoda: Calanoida). J. Plankton Res. 2009, 31, 389–397. [Google Scholar] [CrossRef]
- Lee, C.E.; Bell, M.A. Causes and consequences of recent freshwater invasions by saltwater animals. Trends Ecol. Evol. 1999, 14, 284–288. [Google Scholar] [CrossRef]
- Pennak, R.W. The Fresh-water Invertebrate Fauna: Problems and Solutions for Evolutionary Success. Am. Zool. 1985, 25, 671–687. [Google Scholar] [CrossRef]
- Lutz, R.V.; Marcus, N.H.; Chanton, J.R. Hatching and viability of copepod eggs at two stages of embryological development: Anoxic/hypoxic effect. Mar. Biol. 1994, 119, 199–204. [Google Scholar] [CrossRef]
- Hansen, B.W.; Drillet, G.; Kozmer, A.; Madsen, K.V.; Pedersen, M.E.; Sorensen, T.E. Temperature effects on Copepod egg hatching: Does acclimatization matter? J. Plankton Res. 2010, 32, 305–315. [Google Scholar] [CrossRef]
- Kimmerer, W.J. Mortality estimates of stage structured populations must include uncertainty in stage duration and relative abundance. J. Plankton Res. 2015, 37, 939–952. [Google Scholar] [CrossRef]
- Karlson, A.M.L.; Viitasalo-Frosen, S. Assimilation of 14C-labelled zooplankton benthic eggs by macrobenthos. J. Plankton Res. 2009, 31, 459–463. [Google Scholar] [CrossRef]
- Gentleman, W.C.; Head, E.J.H. Considering non-predatory death in the estimation of copepod early life stage mortality and survivorship. J. Plankton Res. 2017, 39, 92–110. [Google Scholar] [CrossRef][Green Version]
- Dole, M.-J.; Galassi, D.M.P.; Marmonier, P.; Creuz Des Chatelliers, M. The Biology and Ecology of lotic microcrustaceans. Freshw. Biol. 2000, 44, 63–91. [Google Scholar] [CrossRef]
- Belmonte, G.; Miglietta, A.M.; Rubino, F.; Boero, F. Morphological convergence of resting stages produced by planktonic organisms: A review. Hydrobiologia 1997, 335, 159–165. [Google Scholar] [CrossRef]
- Stabili, L.; Miglietta, A.M.; Belmonte, G. Lysozyme-like and trypsin-like activities in the cysts of Artemia franciscana Kellog, 1906: Is there a passive immunity in a resting stage? J. Exp. Mar. Biol. Ecol. 1999, 237, 291–303. [Google Scholar] [CrossRef]
- Redden, A.M.; Daborn, G.R. Viability of subitaneous copepod eggs following fish predation on egg-carrying calanoids. Mar. Ecol. Prog. Ser. 1991, 77, 307–310. [Google Scholar] [CrossRef]
- Barnes, R.D. Invertebrate Zoology; Holt-Saunders International: Philadelphia, PA, USA, 1982; pp. 683–692. [Google Scholar]
- Kalinowska, K.; Karpowicz, M. Ice-on and ice-off dynamics of ciliates and metazooplankton in the Łuczański Canal (Poland). Aquat. Ecol. 2020, 54, 1121–1134. [Google Scholar] [CrossRef]
- Frish, D.; Green, A.J. Copepods come in first: Rapid colonization of new temporary ponds. Fundam. Appl. Limnol. Arch. Hydrobiol. 2007, 168, 289–297. [Google Scholar] [CrossRef]
- Gilbert, J.D.; De Vicente, I.; Ortega, F.; Jimenez-Melero, R.; Parra, G.; Guerrero, F. A comprehensive evaluation of the crustacean assemblages in southern Iberian Mediterranean wetlands. J. Limnol. 2015, 74, 169–181. [Google Scholar] [CrossRef]
- Tonolli, V.; Tonolli, L. Osservazioni sulla biologia ed ecologia di 170 popolamenti zooplanctonici di laghi italiani di alta quota. Mem. Istituto Ital. di Idrobiol. 1951, 6, 53–136. [Google Scholar]
- Andrei, M.; Gandolfi, G. I laghi di val Nure (Appennino piacentino). Boll. Di Pesca Piscic. E Idrobiol. 1965, 41, 61–142. [Google Scholar]
- Marrone, F.; Castelli, G.; Barone, R.; Naselli-Flores, L. Ecology and distribution of calanoid copepods in Sicilian inland waters (Italy). Verh. Int. Ver. Limnol. 2006, 29, 2150–2156. [Google Scholar] [CrossRef]
- Alfonso, G.; Belmonte, G.; Marrone, F.; Naselli-Flores, L. Does lake age affect zooplankton diversity in Mediterranean lakes and reservoirs? A case study from southern Italy. Hydrobiologia 2010, 653, 49–164. [Google Scholar] [CrossRef]
- Alfonso, G.; Belmonte, G. Calanoida (Crustacea Copepoda) from the inland waters of Apulia (south-eastern Italy). J. Limnol. 2011, 70, 57–68. [Google Scholar] [CrossRef]
- Marrone, F.; Petrusek, A.; Alfonso, G.; Arculeo, M. The diaptomid fauna of Israel (Copepoda, Calanoida, Diaptomidae), with notes on the systematics of Arctodiaptomus similis (Baird, 1859) and Arctodiaptomus irregularis Dimentman & Por, 1985 stat. rev. Zool. Stud. 2014, 53, 74. [Google Scholar]
- Toth, A.; Horvath, Z.; Vad, C.F.; Zsuga, K.; Nagy, S.A.; Boros, E. Zooplankton of the European soda pans: Fauna and conservation of a unique habitat type. Int. Rev. Hydrobiol. 2014, 99, 255–276. [Google Scholar] [CrossRef]
- Evtimova, V.V.; Pandourski, I.S. Rotifers and lower crustaceans from South-western Iceland. Biodivers. Data J. 2015, 4, e7522. [Google Scholar] [CrossRef] [PubMed]
Number of Species | ||||||||
---|---|---|---|---|---|---|---|---|
Copeopod | Marine Waters | Inland Waters | ||||||
Western Mediterranean | Adriatic Sea | Europe | Italy | Mexico | Florida | Malaysia | Australia | |
Calanoida | 310 | 181 | 95 | 31 | 15 | 3 | 11 | 41 |
Cyclopoida | 124 | 90 | 210 | 100 | 48 | 41 | 28 | 120 |
References | [3] | [3] | [4] | [5] | [6] | [7] | [8] | Walsh |
Reference | Water Body Type Studied | Number of Sites | Number of Sites with Calanoida |
---|---|---|---|
[39] | alpine lakes | 170 | 82 |
[40] | mountain lakes | 30 | 9 |
[41] | island lakes | 250 | 65 |
[42] | Artificial dams/reservoirs | 51 | 21 |
[43] | lowlands lakes | 121 | 55 |
[44] | medium-small ponds | 60 | 18 |
[45] | soda ponds | 110 | 91 |
[38] | endorheic ponds | 36 | 19 |
[46] | Iceland ponds | 12 | 1 |
Total | 881 | 402 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belmonte, G. The Suspected Contradictory Role of Parental Care in the Adaption of Planktonic Calanoida to Temporary Freshwater. Water 2021, 13, 100. https://doi.org/10.3390/w13010100
Belmonte G. The Suspected Contradictory Role of Parental Care in the Adaption of Planktonic Calanoida to Temporary Freshwater. Water. 2021; 13(1):100. https://doi.org/10.3390/w13010100
Chicago/Turabian StyleBelmonte, Genuario. 2021. "The Suspected Contradictory Role of Parental Care in the Adaption of Planktonic Calanoida to Temporary Freshwater" Water 13, no. 1: 100. https://doi.org/10.3390/w13010100
APA StyleBelmonte, G. (2021). The Suspected Contradictory Role of Parental Care in the Adaption of Planktonic Calanoida to Temporary Freshwater. Water, 13(1), 100. https://doi.org/10.3390/w13010100