Winter Decomposition of Emergent Macrophytes Affects Water Quality under Ice in a Temperate Shallow Lake
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experiment Design
2.3. Chemical Analysis
2.4. Calculations and Statistical Analysis
3. Results
3.1. Mass Loss and C, N, and P Release
3.2. Dynamics of Water Quality
3.3. Relationship between Water Quality and Decomposition
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
pH | Sand (%) | Silt (%) | Clay (%) | Total Organic Carbon (mg/g) | Available Nitrogen (mg/kg) | Available Phosphorus (mg/kg) | Available Potassium (mg/g) |
---|---|---|---|---|---|---|---|
8.39 | 15.57 | 36.40 | 48.03 | 1.79 | 20.61 | 3.96 | 0.13 |
C (mg/g) | N (mg/g) | P (mg/g) | |
---|---|---|---|
Typha orientalis | 412.56 ± 7.93 a | 13.77 ± 1.68 a | 1.35 ± 0.09 a |
Phragmites australis | 395.31 ± 9.45 b | 9.95 ± 1.05 b | 0.49 ± 0.05 b |
References
- Asaeda, T.; Trung, V.K.; Manatunge, J. Modeling the effects of macrophyte growth and decomposition on the nutrient budget in Shallow Lakes. Aquat. Bot. 2000, 68, 217–237. [Google Scholar] [CrossRef]
- Lawniczak, A.E.; Zbierska, J.; Choiński, A.; Szczepaniak, W. Response of emergent macrophytes to hydrological changes in a shallow lake, with special reference to nutrient cycling. Hydrobiologia 2010, 656, 243–254. [Google Scholar] [CrossRef]
- Christensen, J.R.; Crumpton, W.G.; van der Valk, A.G. Estimating the breakdown and accumulation of emergent macrophyte litter: A mass-balance approach. Wetlands 2009, 29, 204–214. [Google Scholar] [CrossRef]
- Banks, L.K.; Frost, P.C. Biomass loss and nutrient release from decomposing aquatic macrophytes: Effects of detrital mixing. Aquat. Sci. 2017, 79, 881–890. [Google Scholar] [CrossRef]
- Pieczyńska, E. Detritus and nutrient dynamics in the shore zone of lakes: A review. Hydrobiologia 1993, 251, 49–58. [Google Scholar] [CrossRef]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here. Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef]
- Sarneel, J.M.; Geurts, J.J.M.; Beltman, B.; Lamers, L.P.M.; Nijzink, M.M.; Soons, M.B. The effect of nutrient enrichment of either the bank or the surface water on shoreline vegetation and decomposition. Ecosystems 2010, 13, 1275–1286. [Google Scholar] [CrossRef][Green Version]
- Jeppesen, E.; Meerhoff, M.; Jacobsen, B.A.; Hansen, R.S.; Søndergaard, M.; Jensen, J.P.; Lauridsen, T.L.; Mazzeo, N.; Branco, C.W.C. Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with lake size and climate. Hydrobiologia 2007, 581, 269–285. [Google Scholar] [CrossRef]
- Erik, J.; Martin, S.; Liu, Z. Lake restoration and management in a climate, change perspective: An introduction. Water 2017, 9, 122. [Google Scholar]
- Mann, C.J.; Wetzel, R.G. Effects of the emergent macrophyte Juncus Effusus L. on the chemical composition of interstitial water and bacterial productivity. Biogeochemistry 2000, 48, 307–322. [Google Scholar] [CrossRef]
- Pan, X.; Ping, Y.; Cui, L.; Li, W.; Zhang, X.; Zhou, J.; Yu, F.; Prinzing, A. Plant litter submergence affect the water quality of a constructed wetland. PLoS ONE 2017, 12, e0171019. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; He, S.; Huang, J.; Gu, J.; Zhou, W.; Gao, L. Decomposition of emergent aquatic plant (cattail) litter under different conditions and the influence on water quality. Water Air Soil Poll. 2017, 228, 70. [Google Scholar] [CrossRef]
- Morris, J.T.; Lajtha, K. Decomposition and nutrient dynamics of litter from four species of freshwater emergent macrophytes. Hydrobiologia 1986, 131, 215–223. [Google Scholar] [CrossRef]
- Belova, M. Microbial decomposition of freshwater macrophytes in the littoral zone of lakes. Hydrobiologia 1993, 251, 59–64. [Google Scholar] [CrossRef]
- Kröger, R.; Holland, M.M.; Moore, M.T.; Cooper, C.M. Plant senescence: A mechanism for nutrient release in temperate agricultural wetlands. Environ. Poll. 2007, 146, 114–119. [Google Scholar] [CrossRef]
- Menon, R.; Holland, M.M. Phosphorus release due to decomposition of wetland plants. Wetlands 2014, 34, 1191–1196. [Google Scholar] [CrossRef]
- Longhi, D.; Bartoli, M.; Viaroli, P. Decomposition of four macrophytes in wetland sediments: Organic matter and nutrient decay and associated benthic processes. Aquat. Bot. 2008, 89, 303–310. [Google Scholar] [CrossRef]
- Eriksson, P.G.; Andersson, J.L. Potential nitrification and cation exchange on litter of emergent, freshwater macrophytes. Freshw. Biol. 1999, 42, 479–486. [Google Scholar]
- Li, X.; Cui, B.; Yang, Q.; Lan, Y.; Wang, T.; Han, Z. Effects of plant species on macrophyte decomposition under three nutrient conditions in a eutrophic shallow lake, North China. Ecol. Model. 2013, 252, 121–128. [Google Scholar] [CrossRef]
- Gingerich, R.T.; Merovich, G.; Anderson, J.T. Influence of environmental parameters on litter decomposition in wetlands in West Virginia, USA. J. Freshwater Ecol. 2014, 29, 535–549. [Google Scholar] [CrossRef]
- Kirillin, G.; Lepparanta, M.; Terzhevik, A.; Nikolai, G.; Bernhardt, J.; Engelhardt, C.; Efremova, T.; Golosov, S.; Palshin, N.; Sherstyankin, P.; et al. Physics of seasonally ice-covered lakes: A review. Aquat. Sci. 2012, 74, 659–682. [Google Scholar] [CrossRef]
- Lindenschmidt, K.; Baulch, H.M.; Cavaliere, E. River and lake ice processes—Impacts of freshwater ice on aquatic ecosystems in a changing globe. Water 2018, 10, 1586. [Google Scholar] [CrossRef]
- Xu, W.; Yu, Y.; Ma, M.; Guo, J.; Zhao, N.; Li, X. Effects of water replenishment from Yellow River on water quality of Hengshui Lake. J. Marine Biol. Aquacul. 2018, 4, 11–13. [Google Scholar]
- Kim, Y.; Ullah, S.; Moore, T.R.; Roulet, N.T. Dissolved organic carbon and total dissolved nitrogen production by boreal soils and litter: The role of flooding, oxygen concentration, and temperature. Biogeochemistry 2014, 118, 35–48. [Google Scholar] [CrossRef]
- Margesin, R.; Miteva, V. Diversity and ecology of psychrophilic microorganisms. Res. Microbiol. 2011, 162, 346–361. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, M.; Fujiu, S.; Xiao, N.; Hanada, Y.; Kudoh, S.; Kondo, H.; Tsuda, S.; Hoshino, T. Cold adaptation of fungi obtained from soil and lake sediment in the Skarvsnes ice-free area, Antarctica. FEMS Microbiol. Lett. 2013, 346, 121–130. [Google Scholar] [CrossRef]
- Beall, B.F.N.; Twiss, M.R.; Smith, D.E.; Oyserman, B.O.; Mckay, R.M.L. Ice cover extent drives phytoplankton- and bacterial community structure in a large north-temperate lake: Implications for a warming climate. Environ. Microbiol. 2016, 18, 1704–1719. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; He, Y.; Jiang, H. Inferior adaptation of bay sediments in a eutrophic shallow lake to winter season for organic matter decomposition. Environ. Poll. 2016, 219, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Yang, W.; Zhang, J.; Deng, R. Fine root decomposition in two subalpine forests during the freeze-thaw season. Can. J. For. Res. 2010, 40, 135–140. [Google Scholar] [CrossRef]
- Bohman, I.M.; Herrmann, J. The timing of winter-growing shredder species and leaf litter turnover rate in an oligotrophic lake, SE Sweden. Hydrobiologia 2006, 556, 99–108. [Google Scholar] [CrossRef]
- Wang, M.; Hao, T.; Deng, X.; Wang, Z.; Li, Z. Effects of sediment-borne nutrient and litter quality on macrophyte decomposition and nutrient release. Hydrobiologia 2017, 787, 205–215. [Google Scholar] [CrossRef]
- Xie, Y.; Xie, Y.; Xiao, H.; Chen, X.; Li, F. Controls on litter decomposition of emergent macrophyte in Dongting lake wetlands. Ecosystems 2017, 20, 1383–1389. [Google Scholar] [CrossRef]
- Villa, J.A.; Mitsch, W.J.; Song, K.; Miao, S. Contribution of different wetland plant species to the DOC exported from a mesocosm experiment in the Florida Everglades. Ecol. Eng. 2014, 71, 118–125. [Google Scholar] [CrossRef]
- Bonanomia, G.; Senatorea, M.; Migliozzia, A.; de Marcob, A.; Pintimallic, A.; Lanzottia, V.; Mazzoleniaa, S. Decomposition of submerged plant litter in a Mediterranean reservoir: A microcosm study. Aquat. Bot. 2015, 120, 169–177. [Google Scholar] [CrossRef]
- Assunção, A.W.d.A.; Souza, B.P.; da Cunha-Santino, M.B.; Bianchini, I., Jr. Formation and mineralization kinetics of dissolved humic substances from aquatic macrophytes decomposition. J. Soil Sediment. 2016, 18, 1252–1264. [Google Scholar]
- Whitworth, K.L.; Baldwin, D.S.; Kerr, J.L. The effect of temperature on leaching and subsequent decomposition of dissolved carbon from inundated floodplain litter: Implications for the generation of hypoxic blackwater in lowland floodplain rivers. Chem. Ecol. 2014, 30, 491–500. [Google Scholar] [CrossRef]
- Hume, N.P.; Fleming, M.S.; Horne, A.J. Denitrification potential and carbon quality of four aquatic plants in wetland microcosms. Soil Sci. Soc. Am. J. 2002, 66, 1706–1712. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, J. Improving winter performance of constructed wetlands for wastewater treatment in Northern China: A review. Wetlands 2014, 34, 243–253. [Google Scholar] [CrossRef]
- Mueller, S.; Mitrovic, S.M.; & Baldwin, D.S. Oxygen and dissolved organic carbon control release of N, P and Fe from the sediments of a shallow, polymictic lake. J. Soil Sediment. 2016, 16, 1109–1120. [Google Scholar] [CrossRef]
- Meding, M.E.; Jackson, L.J. Biological implications of empirical models of winter oxygen depletion. Can. J. Fish. Aquat. Sci. 2001, 58, 1727–1736. [Google Scholar] [CrossRef]
- Powers, S.M.; Baulch, H.M.; Hampton, S.E.; Labou, S.G.; Lottig, N.R.; Stanley, E.H. Nitrification contributes to winter oxygen depletion in seasonally frozen forested lakes. Biogeochemistry 2017, 136, 119–129. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, A.; Gonzalez-Martinez, A.; Martinez-Toledo, M.V.; Garcia-Ruiz, M.J.; Osorio, F.; Gonzalez-Lopez, J. The effect of influent characteristics and operational conditions over the performance and microbial community structure of partial nitritation reactors. Water 2014, 6, 1905–1924. [Google Scholar] [CrossRef]
- Strauss, E.A.; Lamberti, G.A. Effect of dissolved organic carbon quality on microbial decomposition and nitrification rates in stream sediments. Freshw. Biol. 2002, 47, 65–74. [Google Scholar] [CrossRef]
Source | DO | DOC | TN | TP | NH4-N | NO3-N |
---|---|---|---|---|---|---|
Treatment (T) | F2,6 = 2702.39 ** | F2,6 = 471.37 ** | F2,6 = 24.26 ** | F2,6 = 244.92 ** | F2,6 = 15.47 ** | F2,6 = 16.07 ** |
Sampling time (S) | F9,54 = 125.36 ** | F9,54 = 11.72 ** | F9,54 = 6.63 ** | F9,54 = 4.71 ** | F9,54 = 10.25 ** | F9,54 = 3.02 ** |
T × S | F18,54 = 37.29 ** | F18,54 = 5.22 ** | F18,54 = 3.72** | F18,54 = 4.11 ** | F18,54 = 1.74 ns | F18,54 = 0.88 ns |
DO | DOC | TN | TP | NH4-N | NO3-N | |
---|---|---|---|---|---|---|
T. orientalis | ||||||
C release | −0.605 ns | 0.453 ns | −0.409 ns | −0.045 ns | −0.528 ns | 0.277 ns |
N release | −0.656 * | 0.447 ns | −0.441 ns | 0.003 ns | −0.523 ns | 0.183 ns |
P release | −0.788 * | 0.599 ns | −0.238 ns | −0.112 ns | −0.320 ns | 0.306 ns |
P. australis | ||||||
C release | −0.717 * | 0.954 ** | 0.458 ns | −0.119 ns | −0.313 ns | 0.683 * |
N release | −0.696 * | 0.923 ** | 0.718 * | −0.022 ns | −0.015 ns | 0.750 * |
P release | −0.785 ** | 0.842 * | 0.458 ns | 0.071 ns | −0.139 ns | 0.547 ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Zhang, M.; Cui, L.; Pan, X.; Liu, W.; Li, W.; Lei, Y. Winter Decomposition of Emergent Macrophytes Affects Water Quality under Ice in a Temperate Shallow Lake. Water 2020, 12, 2640. https://doi.org/10.3390/w12092640
Wei Y, Zhang M, Cui L, Pan X, Liu W, Li W, Lei Y. Winter Decomposition of Emergent Macrophytes Affects Water Quality under Ice in a Temperate Shallow Lake. Water. 2020; 12(9):2640. https://doi.org/10.3390/w12092640
Chicago/Turabian StyleWei, Yuanyun, Manyin Zhang, Lijuan Cui, Xu Pan, Weiwei Liu, Wei Li, and Yinru Lei. 2020. "Winter Decomposition of Emergent Macrophytes Affects Water Quality under Ice in a Temperate Shallow Lake" Water 12, no. 9: 2640. https://doi.org/10.3390/w12092640
APA StyleWei, Y., Zhang, M., Cui, L., Pan, X., Liu, W., Li, W., & Lei, Y. (2020). Winter Decomposition of Emergent Macrophytes Affects Water Quality under Ice in a Temperate Shallow Lake. Water, 12(9), 2640. https://doi.org/10.3390/w12092640