Methane Levels of a River Network in Wuxi City, China and Response to Water Governance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Measurements
2.3. Air–Water CH4 Diffusive Flux
2.4. Trophic Level Index (TLI)
2.5. Statistical Analysis
3. Results
3.1. CH4 Concentrations and Diffusive Fluxes
3.2. Water Quality
3.3. Water Governance, CH4, and Water Quality
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Myhre, G.; Shindell, D.; Pongratz, J. Climate Change 2013: The Physical Science Basis; Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Ed.; Cambridge University Press: Cambridge, UK, 2013; pp. 659–740. [Google Scholar]
- Etminan, M.; Myhre, G.; Highwood, E.J.; Shine, K.P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys. Res. Lett. 2016, 43, 12614–12623. [Google Scholar] [CrossRef]
- Bastviken, D.; Tranvik, L.J.; Downing, J.A.; Crill, P.M.; Enrich-Prast, A. Freshwater Methane Emissions Offset the Continental Carbon Sink. Science 2011, 331, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laanbroek, H.J. Methane emission from natural wetlands: Interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann. Bot. 2010, 105, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef] [Green Version]
- Stanley, E.H.; Casson, N.J.; Christel, S.T.; Crawford, J.T.; Loken, L.C.; Oliver, S.K. The ecology of methane in streams and rivers: Patterns, controls, and global significance. Ecol. Monogr. 2016, 86, 146–171. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, D.; Li, Y.; Deng, H.; Hu, B.; Ye, M.; Zhou, X.; Da, L.; Chen, Z.; Xu, S. Carbon dioxide and methane dynamics in a human-dominated lowland coastal river network (Shanghai, China). J. Geophys. Res. Biogeosci. 2017, 122, 1738–1758. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; He, Y.; Chen, H.; Yuan, X.; Peng, C.; Yue, J.; Zhang, Q.; Zhou, L. CH4 concentrations and fluxes in a subtropical metropolitan river network: Watershed urbanization impacts and environmental controls. Sci. Total Environ. 2018, 622, 1079–1089. [Google Scholar] [CrossRef]
- Liu, D.W.; Keith, R. The He-Zhang (River Chief/Keeper) System: An Innovation in China’s Water Governance and Management. Int. J. River Basin Manag. 2018, 17, 263–270. [Google Scholar] [CrossRef]
- Feng, L.; Sun, X.; Zhu, X.D. Impact of floodgates operation on water environment using one-dimensional modelling system in river network of Wuxi city, China. Ecol. Eng. 2016, 91, 173–182. [Google Scholar] [CrossRef]
- Yang, M.; Yu, J.; Li, Z.; Guo, Z.; Burch, M.; Lin, T.F. Taihu Lake not to blame for Wuxi’s woes. Science 2008, 319, 158. [Google Scholar] [CrossRef]
- Casper, P.; Furtado, A.L.D.S.; Adams, D.D. Biochemistry and diffuse fluxes of greenhouse gases and dinitrogen from the sediments of oligotrophic Lake Stechlin, northern Germany. Arch. Hydrobiol. 2003, 58, 53–71. [Google Scholar]
- Bastviken, D.; Santoro, A.L.; Marotta, H.; Pinho, L.Q.; Calheiros, D.F.; Crill, P.; Enrichprast, A. Methane Emissions from Pantanal, South America, during the Low Water Season: Toward More Comprehensive Sampling. Environ. Sci. Technol. 2010, 44, 5450–5455. [Google Scholar] [CrossRef] [PubMed]
- Li, L.L.; Yao, S.C.; Xue, B.; Cheng, L.J.; Yan, R.H. Methane levels in five shallow lakes in China: Effect of lake paludification. Quat. Int. 2019, 503, 128–135. [Google Scholar] [CrossRef]
- Ebina, J.; Tsutsui, T.; Shirai, T. Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Res. 1983, 17, 1721–1726. [Google Scholar] [CrossRef]
- Ritchie, R.J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 2006, 89, 27–41. [Google Scholar] [CrossRef]
- Hu, Y.; Wen, Y.; Wang, X. Novel method of turbidity compensation for chemical oxygen demand measurements by using UV–VIS spectrometry. Sens. Actuators B Chem. 2016, 227, 393–398. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Alin, S.R.; Rasera, M.F.F.L.; Salimon, C.I.; Richey, J.E.; Holtgrieve, G.W.; Krusche, A.V.; Snidvongs, A. Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J. Geophys. Res. Biogeosci. 2011, 116, 116. [Google Scholar] [CrossRef]
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. Ocean. 1992, 97, 7373–7382. [Google Scholar] [CrossRef]
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 2014, 12, 351–362. [Google Scholar] [CrossRef]
- Jin, X.C.; Xu, Q.J.; Huang, C.Z. Current status and future tendency of lake eutrophication in China. Sci. China Ser. C Life Sci. 2005, 48, 948–954. [Google Scholar]
- Jin, X.C.; Liu, S.K.; Zhang, Z.S.; Tu, Q.Y.; Xu, N.N. Lake Environment in China; Ocean Press: Beijing, China, 1995. (In Chinese) [Google Scholar]
- Le, S.; Julie, J.; Francois, H. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. Factoextra: Extract and visualize the results of multivariate data analyses. Available online: https://rpkgs.datanovia.com/factoextra/ (accessed on 1 August 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Furlanetto, L.M.; Marinho, C.C.; Palma-Silva, C.; Albertoni, E.F.; Figueiredo-Barros, M.P.; Esteves, F.A. Methane levels in shallow subtropical lake sediments: Dependence on the trophic status of the lake and allochthonous input. Limnologica 2012, 42, 151–155. [Google Scholar] [CrossRef]
- Martinez-Cruz, K.; Gonzalez-Valencia, R.; Sepulveda-Jauregui, A.; Plascencia-Hernandez, F.; Belmonte-Izquierdo, Y.; Thalasso, F. Methane emission from aquatic ecosystems of Mexico City. Aquat. Sci. 2017, 79, 159–169. [Google Scholar] [CrossRef]
- Casper, P. Methane production in lakes of different trophic state. Arch. Hydrobiol. Beih. Ergebn. Limnol. 1992, 37, 149–154. [Google Scholar]
- Tremblay, A.; Varfalvy, L.; Roehm, C. Greenhouse Gas Emissions—Fluxes and Processes. Apress 2005, 7, 111–127. [Google Scholar]
- Kortelainen, P.; Rantakari, M.; Pajunen, H.; Huttunen, J.T.; Mattsson, T.; Juutinen, S.; Larmola, T.; Alm, J.; Silvola, J.; Martikainen, P.J. Carbon evasion/accumulation ratio in boreal lakes is linked to nitrogen. Glob. Biogeochem. Cycles 2013, 27, 363–374. [Google Scholar] [CrossRef]
- Bosse, U.; Frenzel, P.; Conrad, R. Inhibition of methane oxidation by ammonium in the surface layer of a littoral sediment. FEMS Microbiol. Ecol. 1993, 13, 123–134. [Google Scholar] [CrossRef]
- Roy, R.; Knowles, R. Differential inhibition by allylsulfide of nitrification and methane oxidation in freshwater sediment. Appl. Environ. Microbiol. 1995, 61, 4278–4283. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; Mcintyre, P.; Gessner, M.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R.; Stanley, E.H.; Vander Zanden, M.J. State of the World’s Freshwater Ecosystems: Physical, Chemical, and Biological Changes. Annu. Rev. Environ. Resour. 2011, 36, 75–99. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.B.; Tan, Y.J.; Wang, D.Q.; Deng, H.G.; Li, Y.J.; Yu, Z.J.; Chen, Z.L. Methane and nitrous oxide dissolved concentration and emission flux of plain river network in winter. Sci. Sin. Chim. 2013, 43, 919–929. (In Chinese) [Google Scholar]
- Yang, L.B.; Li, X.Y.; Yan, W.J.; Ma, P.; Wang, J.N. CH4 Concentrations and Emissions from Three Rivers in the Chaohu Lake Watershed in Southeast China. J. Integr. Agric. 2012, 11, 665–673. [Google Scholar] [CrossRef]
- Hou, C.C.; Zhang, F.; Li, Y.C.; Wang, Q.B.; Liu, S. Characteristics of Dissolved CH4 and N2O Concentrations of Weihe River in Xinxiang Section in Spring. Environ. Sci. 2016, 37, 1892–1899. (In Chinese) [Google Scholar]
- Rajkumar, A.N.; Barnes, J.; Ramesh, R.; Purvaja, R.; Upstill-Goddard, R.C. Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. Mar. Pollut. Bull. 2008, 56, 2043–2051. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Bass, A.; Waldron, S. Carbon dioxide and methane temporal dynamics in an urban river. Geophys. Res. Abstr. 2019, 21, 1. [Google Scholar]
- Zhong, J.C.; Liu, G.F.; Fan, C.X.; Li, B.; Zhang, L.; Ding, S.M. Environmental effect of sediment dredging in lake:II;. The role of sediment dredging in reducing internal nitrogen release. J. Lake Sci. 2009, 21, 335–344. (In Chinese) [Google Scholar]
- Gu, X.Z.; Jiang, W.H. Dissolved oxygen dynamic across the new-born interface of bottom water and sediment after dredging contaminated sediment. J. Lake Sci. 2018, 30, 1518–1524. (In Chinese) [Google Scholar]
- Meissner, R. Water Governance and Management and Climate Change; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Li, L.L.; Xue, B.; Yao, S.C.; Tao, Y.Q.; Yan, R.H. Spatial–temporal patterns of methane dynamics in Lake Taihu. Hydrobiologia 2018, 822, 143–156. [Google Scholar] [CrossRef]
- Liu, L.; Wilkinson, J.; Koca, K.; Buchmann, C.; Lorke, A. The role of sediment structure in gas bubble storage and release. J. Geophys. Res. Biogeosci. 2016, 121, 1992–2005. [Google Scholar] [CrossRef]
Sites | River | Width (m) * | Depth (m) & | Group 1 $ | Group 2 # | Sites | River | Width (m) * | Depth (m) & | Group 1 $ | Group 2 # |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Liangxihe | 3–5 | 3.2 | A | H | 24 | Maligang | - | 3.1 | C | NB |
2 | Maligang | 3–3.5 | 3.3 | B | H | 25 | Lucunhe | 1.2 | 1.7 | B | NG |
3 | Dongxinhe | 0.8 | 1.2 | B | H | 26 | Lucunhe | - | 0.2 | C | NB |
4 | Dongxinhe | - | 0.3 | C | NB | 27 | Lucunhe | - | 0.8 | C | NB |
5 | Liangxihe | - | 2.0 | B | H | 28 | Caowangjing | 2–3 | 3.0 | B | H |
6 | Xianjingbang | 0.7 | 1.8 | A | H | 29 | Caowangjing | - | 3.5 | B | NG |
7 | Liangxihe | - | 3.5 | A | H | 30 | Caowangjing | - | 2.0 | B | H |
8 | Xianjingbang | - | 2.3 | C | NB | 31 | Caowangjing | - | 2.5 | B | H |
9 | Xianjingbang | - | 1.8 | C | H | 32 | Lihe | 1 | 2.7 | B | H |
10 | Xixinhe | 0.5 | 0.9 | B | H | 33 | Miaoqiaogang | 1 | 0.8 | A | NG |
11 | Xixinhe | - | 0.6 | B | NG | 34 | Miaoqiaogang | - | 2.6 | A | NG |
12 | Unknown | 1.2 | 0.7 | B | H | 35 | Renzigang | 0.8 | 2.7 | A | NG |
13 | Unknown | - | 1.8 | A | H | 36 | Lihe | - | 2.8 | B | H |
14 | Liangxihe | - | 3.5 | B | H | 37 | Lihe | - | 3.0 | A | H |
15 | Dingchangqiaobang | 2 | 1.8 | A | NG | 38 | Renzigang | - | 1.9 | A | NG |
16 | Ludianqiaobang | 2 | 1.7 | A | NG | 39 | Daxuanhe | - | 1.8 | A | H |
17 | Dingchangqiaobang | - | 0.8 | B | H | 40 | Meiliang Bay Pump Gate | - | 3.2 | A | NG |
18 | Ludianqiaobang | - | 3.1 | A | H | 41 | Daxuanhe | - | 3.1 | A | NG |
19 | Ludianqiaobang | - | 1.1 | B | H | 42 | Lake Lihu | - | 1.4 | B | H |
20 | Lixihe | 1.1 | 1.5 | A | NG | 43 | Shanxihe | 0.6 | 1.9 | A | NG |
21 | Chendahe | 1 | 1.7 | B | H | 44 | Shanxihe | - | 2.4 | B | H |
22 | Maligang | - | 2.7 | A | NG | 45 | Miaojingbang | - | 0.5 | B | H |
23 | Duantoubang | - | 0.6 | A | H |
Sites | CH4-Wat. (μmol L−1) | CH4-Flux (μmol m−2 h−1) | CH4-Sed (μmol L−1) | WT (°C) | DOC (mg L−1) | Water Content (%) | LOI (%) |
---|---|---|---|---|---|---|---|
1 | 0.18 ± 0.017 | 3.85 | 759.95 ± 335.65 | 24.7 | 11.12 | 63.54 | 6.35 |
2 | 0.17 ± 0.046 | 5.45 | 469.42 ± 120.21 | 25.3 | 19.18 | 54.53 | 5.27 |
5 | 0.16 ± 0.038 | 12.68 | nd | 24.9 | 5.68 | nd | nd |
8 | 12.52 ± 4.52 | 363.74 | 448.86 ± 7.84 | 24.2 | 12.54 | 78.08 | 13.45 |
14 | 0.06 ± 0.016 | 3.03 | nd | 24.8 | 9.20 | nd | nd |
17 | 0.47 ± 0.13 | 5.79 | 18.01 ± 31.61 | 22.6 | 6.04 | 33.28 | 4.82 |
18 | 1.24 ± 0.095 | 5.10 | 1028.89 ± 15.22 | 24.7 | 1.54 | 57.22 | 6.57 |
19 | 0.22 ± 0.073 | 6.50 | 345.59 ± 462.33 | 22.4 | 25.06 | 79.06 | 12.38 |
21 | 8.91 ± 1.37 | 27.44 | 173.37 ± 53.52 | 24.1 | 9.49 | 57.35 | 8.18 |
24 | 3.89 ± 0.33 | 104.62 | 472.11 ± 8.75 | 24.9 | 7.38 | 61.18 | 8.16 |
26 | 5.65 ± 0.23 | 663.51 | 458.80 ± 46.43 | 23.6 | 7.84 | 24.66 | 3.27 |
27 | 16.37 ± 0.36 | 409.26 | 226.12 ± 125.63 | 23.0 | 15.94 | 36.54 | 4.14 |
29 | 0.07 ± 0.0034 | 4.61 | 423.49 ± 144.07 | 24.3 | 18.26 | 53.47 | 6.78 |
31 | 0.05 ± 0.010 | 3.59 | 348.70 ± 18.05 | 24.2 | 9.50 | 42.06 | 4.34 |
15 | 0.18 ± 0.12 | 6.79 | 345.94 ± 16.95 | 23.6 | 13.00 | nd | nd |
22 | 0.50 ± 0.19 | 10.67 | 200.59 ± 26.95 | 24.2 | 9.53 | 63.35 | 13.61 |
25 | 0.23 ± 0.0088 | 12.84 | nd | 23.8 | 30.09 | 77.58 | 11.33 |
32 | 0.16 ± 0.067 | 7.30 | 352.99 ± 62.51 | 23.6 | 9.23 | 32.51 | 3.97 |
34 | 0.33 ± 0.064 | 4.81 | nd | 24.1 | 8.26 | nd | nd |
35 | 0.33 ± 0.062 | 4.92 | 741.58 ± 369.79 | 23.3 | 12.35 | 50.06 | 4.40 |
43 | 0.20 ± 0.022 | 4.04 | 508.01 ± 117.64 | 24.0 | 19.02 | 55.31 | 6.13 |
ANOVA | Post Hoc “Bonferroni” | Post Hoc “Bonferroni” | |
---|---|---|---|
p-Values | p-Values between Groups H and NB | p-Values between Groups H and NG | |
CH4 | 0.000 | 0.000 | |
DO | 0.008 | 0.006 | |
ORP | 0.43 | ||
SD | 0.045 | ||
Chla | 0.44 | ||
TN | 0.000 | 0.000 | |
TP | 0.000 | 0.000 | |
CODMn | 0.000 | 0.000 | 0.045 |
NH3–N | 0.000 | 0.000 | |
NO3–N | 0.67 | ||
PO4–P | 0.000 | 0.000 | |
DOC | 0.79 | ||
DIC | 0.39 |
City/Country | Subarea | Sampling Time | CH4 Concentration (μmol L−1) | Influencing Factors | References |
---|---|---|---|---|---|
Shanghai | Urban | Annual | 13.31 ± 22.06 | DO, N, P | [7] |
Suburban | 2.56 ± 1.59 | ||||
Rural | 2.04 ± 1.29 | ||||
Chongqing | Urban | Annual | 1.9 ± 2.63 | DOC, DIC, N, P | [8] |
Suburban | 0.66 ± 0.71 | ||||
Urban | September | 1.64 ± 2.2 | |||
Suburban | 0.59 ± 0.47 | ||||
Tianjin | Urban | March | 0.3 (0.04–1.35) | DO, NH3–N | [36] |
Sewage River | 38.4 | ||||
Hefei | Urban | July and August | 0.09 ± 0.01 | DO | [37] |
Rural Cropland | 0.26 ± 0.030.38 ± 0.08 | ||||
Wuxi | Urban | September | 2.47 ± 4.5 (0.05–16.37) Medium 0.23 | DO, NH3–N | This study |
Xinxiang | Urban | Annual | 0.6–17.64 | NH3–N, DOC, DIC, DO, pH | [38] |
Suburban | 0.19–16.01 | ||||
Industrial zone | 6.98–13.11 | ||||
Mean | 1.2–3.3 | ||||
Chennai, India | Urban | September | 114 (4.7–202) | DO, NH3–N | [39] |
Rural Cropland | 7.52 (0.81–14.6) | ||||
Glasgow, UK | Urban | Annual | 4.01 ± 1.91 | - | [40] |
Mean | 10.8 | ||||
Medium | 2.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Yan, R.; Xue, B. Methane Levels of a River Network in Wuxi City, China and Response to Water Governance. Water 2020, 12, 2617. https://doi.org/10.3390/w12092617
Li L, Yan R, Xue B. Methane Levels of a River Network in Wuxi City, China and Response to Water Governance. Water. 2020; 12(9):2617. https://doi.org/10.3390/w12092617
Chicago/Turabian StyleLi, Lingling, Renhua Yan, and Bin Xue. 2020. "Methane Levels of a River Network in Wuxi City, China and Response to Water Governance" Water 12, no. 9: 2617. https://doi.org/10.3390/w12092617
APA StyleLi, L., Yan, R., & Xue, B. (2020). Methane Levels of a River Network in Wuxi City, China and Response to Water Governance. Water, 12(9), 2617. https://doi.org/10.3390/w12092617