Urban Stormwater Management, a Tool for Adapting to Climate Change: From Risk to Resource
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Evolution of Rainfall: An Increase in Heavy Rain and an Intensification of Dry Periods?
3.2. Changes in the Water Cycle and Rain Harvesting Infrastructures in the City of Alicante
- To minimise the flood hazard for areas of reiterated risk, given their location in either land-locked areas or close to the sea level (Figure 3).
- To reduce the level of pollution of superficial urban drainage, given the high percentage of lead as a result of vehicle pollution. Also, to mitigate the damage generated by these pollutants being discharged on the beaches with the resulting loss of quality of their waters. Both of these issues are particularly important given the relevance of the sun and beach tourism activity developed in the city.
- To create public green areas for the leisure and entertainment of the citizens, which are so necessary in urban areas. These new spaces have been created, both directly, exploiting these green infrastructures (floodable parks) and, indirectly, having an available resource (stormwater) that increases the water supply for non-consumptive uses (watering gardens).
3.3. Proposal for Future Actions within a Context of Adapting to Climate Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hernandez, M.; Morote, A.F.; Moltó, E. El secano mejorado y la agricultura aterrazada. Paisajes significativos con un gran valor socio-ambiental y didáctico. Erebea 2019, 4, 161–188. [Google Scholar] [CrossRef] [Green Version]
- Morales, A.; Hernández, M. Aproximación epistemológica sobre los usos de agua de avenida en las laderas subáridas. In Ciencia Regional y Andalucía a partir de la visión del geógrafo Gabriel Marco Cano García. Un homenaje a su vida y obra; Marquez Domínguez, J.A., Borrel, R.M.J., Eds.; Editorial Servicio de Publicaciones de la Universidad de Sevilla: Sevilla, Spain, 2018; pp. 279–288. [Google Scholar]
- Palerm, J. Antología Sobre Pequeño Riego. Sistemas de Riego no Convencionales; Colegio de Postgraduados: Montecillo, Mexico, 2002; Volume 3, pp. 1–17. [Google Scholar]
- Moltó, E.; Hernández, M. La subexplotación de los paisajes culturales y su incidencia en los riesgos naturales. Una propuesta metodológica. In Investigando en Rural; Baena, R., Foronda, C., Galindo, L., García, A., García, A.M., García, B., Guerrero, I., Navarro, L., Prados, M.J., Posada, J.C., Eds.; Asociación de Geógrafos Españoles: Sevilla, Spain, 2012; pp. 483–491. [Google Scholar]
- Marco, J.A.; Morales, A. Terrazas de cultivo abandonadas en el sureste peninsular: Aspectos evolutivos. Investig. Geográficas 1995, 13, 81–90. [Google Scholar] [CrossRef]
- Morote, A.F.; Hernández, M. El uso de aguas pluviales en la ciudad de Alicante. De Viejas ideas a nuevos enfoques. Pap. Geogr. 2017, 63, 7–25. [Google Scholar]
- Hernández, M.; Saurí, D.; Moltó, E. Las aguas pluviales y de tormenta: Del abandono de un recurso hídrico con finalidad agrícola a su implantación como recurso no convencional en ámbitos urbanos. In Paisaje, Cultura Territorial y Vivencia de la Geografía. Libro Homenaje al Profesor Alfredo Morales Gil; Vera, J.F., Olcina, J., Hernández, M., Eds.; Servicio de Publicaciones de la Universidad de Alicante: Alicante, Spain, 2016; pp. 1.099–1.120. [Google Scholar]
- Burriel, E. La década prodigiosa del urbanismo español (1997–2006). Scr. Nova 2008, 270. Available online: http://www.ub.es/geocrit/sn/sn-270/sn-270-64.htm (accessed on 10 August 2020).
- Morote, A.F.; Olcina, J.; Hernández, M. The use of non-conventional water resources as a means of adaptation to drought and climate change in semi-arid regions: South-Eastern Spain. Water 2019, 11, 93. [Google Scholar] [CrossRef] [Green Version]
- Swyngedouw, E. Liquid Power. Water and Contested Modernities in Spain. 1998–2010; The Mit Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Vallès, M.; March, H.; Saurí, D. Decentralized and user-led approaches to rainwater harvesting and greywater recycling: The case of Sant Cugat del Vallès, Barcelona, Spain. Built Environ. 2016, 42, 243–257. [Google Scholar] [CrossRef]
- Nóblega, A.; Saurí, D.; March, H. Community involvement in the implementation of Sustainable Urban Drainage Systems (SUDs): The case of Bon Pastor, Barcelona. Sustainability 2020, 12, 510. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.H.; Ho, Y.S.; Fu, H.Z. Global performance and development on sustainable city based on natural science and social science research: A bibliometric analysis. Sci. Total. Environ. 2019, 666, 1245–1254. [Google Scholar] [CrossRef]
- Jamali, B.; Bach, P.M.; Deletic, A. Rainwater harvesting for urban flood management—An integrated modelling framework. Water Res. 2020, 171, 115372. [Google Scholar] [CrossRef]
- Prokop, G.; Jobstmann, H.; Schönbauer, A. Overview on Best Practices for Limiting Soil Sealing and Mitigating Its Effects in EU-27; Environment Agency Austria: Vienna, Austria, 2011. [Google Scholar]
- Rodríguez, M.I. El agua y la ciudad de hoy. Equip. Y Serv. Munic. 2005, 117, 18–38. [Google Scholar]
- Shun Chan, F.K.; Griffiths, J.A.; Higgitt, D.; Xu, S.; Zhu, F.; Tang, Y.T.; Xu, Y.; Thorne, C.R. “Sponge City” in China. A breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Suleiman, L.; Olofsson, B.; Saurí, D.; Palua-Rof, L. A breakthrough in urban rain-harvesting schemes through planning for urban greening: Case studies from Stockholm and Barcelona. Urban. Urban. Gree. 2020, 51, 126678. [Google Scholar] [CrossRef]
- Bashar, M.Z.I.; Karim, M.R.; Imteaz, M.A. Reliability and economic analysis of urban rainwater harvesting: A comparative study within six major cities of Bangladesh. Resourc. Conserv. Recy. 2018, 133, 146–154. [Google Scholar] [CrossRef]
- Sedlak, D. Water 4.0: The Past, Present and Future of the World’s Most Vital Resource; Yale University Press: New Haven, CT, USA, 2014. [Google Scholar]
- Imteaz, M.A.; Moniruzzaman, M. Spatial variability of reasonable government rebates for rainwater tank installations: A case study for Sydney. Resour. Conserv Recycl. 2018, 133, 112–119. [Google Scholar] [CrossRef]
- Paudel, U.; Imteaz, M.A.; Matos, C. Equations for potential water savings through rainwater harvesting for different climatic conditions in Adelaide (Australia). Int. J. Hydrol. Sci. Technol. 2018, 8, 91–104. [Google Scholar] [CrossRef]
- Domènech, L.; March, H.; Saurí, D. Degrowth initiatives in the urban water sector? A social multi-criteria evaluation of non-conventional water alternatives in Metropolitan Barcelona. J. Clean Prod. 2013, 38, 44–55. [Google Scholar] [CrossRef]
- Jing, X.; Zhang, S.; Zhang, J.; Wang, Y.; Wang, Y. Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China. Resour Conserv. Recy. 2017, 126, 74–85. [Google Scholar] [CrossRef]
- Lopes, V.A.R.; Marques, G.F.; Dornelles, F.; Medellin-Azuara, J. Performance of rainwater harvesting systems under scenarios of non-potable water demand and roof area typologies using a stochastic approach. J. Clean Prod. 2017, 148, 304–313. [Google Scholar] [CrossRef]
- Ursino, N.; Grisi, A. Reliability and efficiency of rainwater harvesting systems under different climatic and operational scenarios. Int. J. Sustain. Dev. Plan. 2017, 12, 194–199. [Google Scholar] [CrossRef]
- Hopkins, K.; Bhaskar, A.; Woznicki, S.A.; Fanelli, R.M. Changes in event-based streamflow magnitude and timing after suburban development with infiltration-based stormwater management. Hydrol. Process. 2019, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change [IPCC]. Special Report on Global Warming of 1.5 °C. Contribution of Working Group I to the Fifth Assesment Report of the Intergovernmental Panel on Climate Change (AR5). 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 3 May 2020).
- Intergovernmental Panel on Climate Change [IPCC]. Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems. In Contribution of Working Group I to the Fifth Assesment Report of the Intergovernmental Panel on Climate Change (AR5); Intergovernmental Panel on Climate Change [IPCC]: Geneva, Switzerland, 2018. Available online: https://www.ipcc.ch/report/srccl/ (accessed on 4 May 2020).
- Gallego, M.C.; Trigo, R.M.; Vaquero, J.M.; Brunet, M.; García, J.A.; Sigró, J.; Valente, M.A. Trends in frequency indices of daily precipitation over the Iberian Peninsula during the last century. J. Geoph. Res. 2011, 116. [Google Scholar] [CrossRef]
- Miró, J.J.; Estrela, M.J.; Olcina, J. Reconstrucción de la señal térmica local en la Comunidad Valenciana entre 1948 y 2011 a partir de un downscaling estadístico mediante una red neuronal artificial: Detección de patrones locales de cambio. Boletín Asoc. Geógrafos Españoles 2016, 70, 113–147. [Google Scholar]
- Sauri, D.; Olcina, J.; March, H.; Martín-Vide, J.; Vera, J.F.; Padilla, E.; Serra-Llobet, A. Tourism, Climate Change and Water Resources: Coastal Mediterranean Spain as an Example. In European Climate Vulnerabilities and Adaptation: A Spatial Planning Perspective; Schmidt-Thomé, P.H., Greiving, S., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 231–252. [Google Scholar]
- Monjo, R.; Martín-Vide, J. Daily precipitation concentration around the world according to several indices. Int. J. Clim. 2016, 36, 3828–3838. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.; Azorín-Molina, C.; Peña-Gallardo, M.; Tomas-Burguera, M.; Domínguez-Castro, F.; Martín-Hernández, N.; Beguería, S.; Kenawy, A.E.; Noguera, I.; García, M. A high-resolution spatial assessment of the impacts of drought variability on vegetation activity in Spain from 1981 to 2015. Nat. Hazards Earth Syst. Sci. 2019, 19, 1189–1213. [Google Scholar] [CrossRef] [Green Version]
- Marcos-García, P.; Pulido-Velázquez, M. Cambio climático y planificación hidrológica: ¿Es adecuado asumir un porcentaje único de reducción de aportaciones para toda la demarcación? Ing. Del Agua 2017, 21, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Vargas, M.V.; Rovira, M.R.; Gabarrell, X.; Villalba, G. Cost-effective rainwater harvesting system in the Metropolitan Area of Barcelona. J. Water Supply Res. Technol. 2014, 63, 586–595. [Google Scholar] [CrossRef]
- Morote, A.F.; Hernández, M.; Rico, A.M. Causes of Domestic Water Consumption Trends in the City of Alicante: Exploring the Links between the Housing Bubble, the Types of Housing and the Socio-Economic Factors. Water 2016, 8, 374. [Google Scholar] [CrossRef] [Green Version]
- Morote, A.F.; Olcina, J.; Rico, A.M. Challenges and Proposals for Socio-Ecological Sustainability of the Tagus–Segura Aqueduct (Spain) under Climate Change. Sustainability 2017, 9, 2058. [Google Scholar] [CrossRef] [Green Version]
- Hernández, M.; Morote, A. The use of rainwater (Southeast Spain). A new urban approach to urban water management. UPLanD 2019, 4, 53–66. [Google Scholar]
- Agencia Estatatal de Meteorología [AEMET]. Datos Abiertos. AEMET Open Data. 2019. Available online: http://www.aemet.es/es/datos_abiertos/AEMET_OpenData (accessed on 27 April 2020).
- Agencia Valenciana de Meteorología [AVAMET]. Estadísticas y Meteored Fechas históricas. 2019. Available online: https://www.avamet.org/mx-meteoxarxa.php (accessed on 27 April 2020).
- Aguas Municipalizadas de Alicante, Empresa Mixta (AMAEM). Datos Sobre Consumo de Agua; AMAEM: Alicante, Spain, 2019. [Google Scholar]
- De Luis, M.; Brunetti, M.; Gonzalez-Hidalgo, J.C.; Longares, L.A.; Martin-Vide, J. Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Glob. Planet. Chang. 2010, 74, 27–33. [Google Scholar] [CrossRef]
- Miró, J. Downscaling Estadístico de Series Climáticas Mediante Redes Neuronales: Reconstrucción en alta Resolución de la Temperatura Diaria Para la Comunidad Valenciana. Interpolación Espacial y Análisis de Tendencias (1948–2011). Ph.D. Thesis, Universidad de Alicante, Alicante, Spain, 2014. [Google Scholar] [CrossRef]
- Serrano, R. Reconstrucción Climática Instrumental de la Precipitación Diaria en España: Ensayo Metodológico y Aplicaciones. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2017. [Google Scholar]
- Olcina, J. Incremento de episodios de inundación por lluvias de intensidad horaria en el sector central del litoral mediterráneo español: Análisis de tendencias en Alicante. Semata 2017, 29, 143–163. [Google Scholar]
- Agencia Estatal de Meteorología [AEMET]. Atlas Climático Ibérico; Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2019.
- Centro de Estudios y Experimentación de Obras Públicas [CEDEX]. Evaluación del Impacto del Cambio Climático en los Recursos Hídricos y Sequías en España; Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente y Ministerio de Fomento: Madrid, Spain, 2017.
- Agencia Estatal de Meteorología [AEMET]. Proyecciones Climáticas Para el Siglo XXI en España. 2019. Available online: http://www.aemet.es/es/serviciosclimaticos/cambio_climat (accessed on 27 January 2020).
- Instituto Geológico y Minero [IGME] y Diputación Provincial de Alicante. Atlas Hidrogeológico de la Provincia de Alicante. 2015. Available online: https://ciclohidrico.com/descargas/documentos/ (accessed on 2 May 2020).
- Confederación Hidrográfica del Júcar [CHJ]. Plan. Hidrológico de la Cuenca del Jucar, 2021–2027. Available online: https://www.chj.es/es-es/medioambiente/planificacionhidrologica/Paginas/PHC-2021-2027-Indice.aspx (accessed on 30 April 2020).
- Millán, M.; Estrela, M.J.; Miró, J.J. Rainfall components: Variability and spatial distribution in a Mediterranean area (Valencia region). J. Clim. 2005, 18, 2682–2705. [Google Scholar] [CrossRef]
- Confederación Hidrográfica del Segura. Cronología de Riadas en la Cuenca del río Segura (1259–2012). Available online: https://www.chsegura.es/chs/informaciongeneral/elorganismo/unpocodehistoria/riadas.html (accessed on 27 January 2020).
- Muñoz, C.; Schultz, D.; Vaughan, G. A Midlatitude Climatology and Interannual Variability of 200- and 500-hPa Cut-Off Lows. J. Clim. 2020, 33, 2201–2222. [Google Scholar] [CrossRef] [Green Version]
- Biener, S. Confirmado, las DANAs Están Aumentando de Forma Notable en Europa. Tiempo.com. 20 February 2020. Available online: https://www.tiempo.com/noticias/actualidad/gotas-frias-danas-son-mas-habituales-desde-1960-espana.html (accessed on 28 April 2020).
- Pastor, F.; Valiente, J.J.; Khodayar, S. A Warming Mediterranean: 38 Years of Increasing Sea Surface Temperature. Remote Sens. 2020, 12, 2687. [Google Scholar] [CrossRef]
- Pastor, F.; Valiente, J.A.; Palau, J.L. Sea Surface Temperature in the Mediterranean: Trends and Spatial Patterns (1982–2016). Pure Appl. Geophys. 2018, 175, 4017–4029. [Google Scholar] [CrossRef] [Green Version]
- Agencia Estatal de Meteorología [AEMET]. Informe sobre el estado del clima de España 2019; Ministerio para la Transición Ecológica y el Reto Demográfico. Madrid, 2020. Available online: http://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/estudios/Informes%20estado%20clima/Informe_estado_clima_2019.pdf (accessed on 25 August 2020).
- Confederación Hidrográfica del Jucár [CHJ. Plan. Especial de Sequía. Available online: https://www.chj.es/Descargas/ProyectosOPH/RevisionPES/memoriaPES.pdf (accessed on 5 May 2020).
- Olcina, J.; Moltó, E. Climas y Tiempos del País Valenciano; Publicaciones de la Universidad de Alicante: Alicante, Spain, 2019. [Google Scholar]
- Morote, A.F.; Olcina, J.; Rico, A.M.; Hernández, M. Water Management in Urban Sprawl typologies in the City of Alicante (Southern Spain): New Trends and Perception after the Economic Crisis? Urban. Sci. 2019, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Asociación Española de Abastecimientos de Agua y Saneamiento [AEAS]. Informe Sobre Aguas Residuales en España. Dia Mundial del Agua, 2017. Available online: https://www.asoaeas.com/sites/default/files/Documentos/Informe%20sobre%20aguas%20residuales%20AEAS.pdf (accessed on 27 April 2020).
- Diario Información. Available online: https://www.diarioinformacion.com/multimedia/videos/alicante/2019-08-21-181911-lluvia-deja-aparcamientos-playa-juan-inundados-coches-bloqueados.html (accessed on 21 August 2019).
- Benhamrouche, A.; Martín Vide, F.J. Avances metodológicos en el análisis de la concentración diaria de la precipitación en la España peninsular. An. Geogr. Univ. Complut. 2012, 32, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Ribas, A.; Olcina, J.; Saurí, D. More exposed but also more vulnerable? Climate change, high intensity precipitation events and flooding in Mediterranean Spain. Disaster. Prev. Manag. 2020, 29, 229–248. [Google Scholar] [CrossRef]
- Gil, A.; Hernández, M.; Morote, A.F.; Rico, A.M.; Saurí, D.; March, H. Tendencias del consumo de agua potable en la ciudad de Alicante y Área Metropolitana de Barcelona, 2007–2013; Hidraqua, Gestión Integral de Aguas de Levante, S.A. y Universidad de Alicante: Alicante, Spain, 2015. [Google Scholar]
- Olcina, J. Clima, cambio climático y riesgos climáticos en el litoral mediterráneo. Oportunidades para la geografía. DAG 2020, 66, 159–182. [Google Scholar] [CrossRef]
- Serrano, R.; Martin-Vide, J.; Saz, M.A.; Longares, L.A.; Beguería, S.; Sarricolea, P.; Meseguer-Ruiz, O.; De Luis, M. Spatio-temporal variability of daily precipitation concentration in Spain based on a high-resolution gridded data set. Int. J. Climatol. 2018, 38, 518–530. [Google Scholar] [CrossRef] [Green Version]
- Benabdelouahab, T.; Gadouali, F.; Boudhar, A.; Lebrini, Y.; Hadria, R.; Salhi, A. Analysis and trends of rainfall amounts and extreme events in the Western Mediterranean region. Theor. Appl. Climatol. 2020, 141, 309–320. [Google Scholar] [CrossRef]
- Mathbout, S.; Lopez-Bustins, J.A.; Royé, D.; Martin-Vide, J.; Benhamrouche, A. Spatiotemporal variability of daily precipitation concentration and its relationship to teleconnection patterns over the Mediterranean during 1975–2015. Int. J. Climatol. 2020, 40, 1435–1455. [Google Scholar] [CrossRef]
- Martín, F. Los Inviernos Serán Más Cálidos, Pero También con Irrupciones Más Frías. Revista del Aficionado a la Meteorología 2019. Available online: https://www.tiempo.com/ram/507091/los-inviernos-seran-mas-calidos-pero-tambien-con-irrupciones-mas-frias/ (accessed on 3 May 2020).
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Morote, A.F.; Rico, A.M.; Moltó, E. Critical review of desalination in Spain: A resource for the future? Geogr. Res. 2017, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jato-Espino, D.; Charlesworth, S.M.; Bayon, J.R.; Warwick, F. Rainfall-runoff simulations to assess the potential of suds for mitigating flooding in highly urbanized catchments. Int. J. Environ. Res. Public Health 2016, 13, 149. [Google Scholar] [CrossRef]
- Campisano, A.; Gnecco, I.; Modica, C.; Palla, A. Designing domestic rainwater harvesting systems under different climatic regimes in Italy. Water Sci. Technol. 2013, 67, 2511–2518. [Google Scholar] [CrossRef]
- Morote, A.F.; Hernández, M.; Rico, A.M.; Eslamian, S. Inter-basin water transfer conflicts. The case of the Tagus-Segura Aqueduct (Spain). Int. J. Hydrol. Sci. Technol. 2020, 10, 364–391. [Google Scholar] [CrossRef]
- Sales-Ortells, H.; Medema, G. Microbial health risks associated with exposure to stormwater in a water plaza. Water Res. 2015, 74, 34–46. [Google Scholar] [CrossRef]
- Morote, A.F. El Parque Inundable La Marjal de Alicante (España) como propuesta didáctica para la interpretación de los espacios de riesgo de inundación. Didáctica Geográfica 2017, 18, 211–230. [Google Scholar]
Date | Accumulated Rainfall (mm/24 h) |
---|---|
20 October 1982 | 233.1 mm |
4 November 1987 | 92.0 mm |
5 September 1989 | 133.6 mm |
30 September 1997 | 270.3 mm |
23 October 2000 | 55.4 mm |
21 September 2007 | 90.4 mm |
28 September 2009: | 131.0 mm |
18 November 2012 | 55.2 mm |
19 January 2017 | 66.0 mm |
13 March 2017 | 137.4 mm |
28 January 2018 | 55.2 mm |
21 August 2019 | 86.8 mm |
12 September 2019 | 74.6 mm |
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|---|---|---|---|---|
January | 0 | 32,428 | 20,586 | 0 | 0 | 19,051 | 95,681 | 69,500 | 23,420 |
February | 0 | 10,418 | 20,718 | 0 | 0 | 0 | 11,440 | 60,430 | 0 |
March | 0 | 59,944 | 14,611 | 0 | 24,891 | 21,989 | 64,446 | 12,987 | 0 |
April | 0 | 25,905 | 148,068 | 1162 | 36,577 | 26,513 | 6679 | 27,486 | 135,580 |
May | 0 | 0 | 17,247 | 2863 | 0 | 17,875 | 1200 | 0 | 0 |
June | 0 | 6433 | 0 | 0 | 10,060 | 0 | 0 | 68,801 | 0 |
July | 0 | 0 | 0 | 0 | 0 | 5040 | 32,310 | 0 | 0 |
August | 0 | 0 | 76,768 | 9620 | 0 | 0 | 66,857 | 20,775 | 111,200 |
September | 0 | 65,395 | 0 | 52,818 | 98,496 | 0 | 60,000 | 69,960 | 126,734 |
October | 20,400 | 108,209 | 0 | 29,084 | 76,726 | 83,390 | 39,579 | 142,037 | 80,000 |
November | 62,214 | 145,651 | 16,793 | 76,500 | 60,000 | 86,263 | 15,000 | 50,657 | 108,600 |
December | 24,380 | 0 | 87,170 | 52,115 | 0 | 170,432 | 0 | 11,824 | 0 |
Total | 106,994 | 454,383 | 401,961 | 224,162 | 306,750 | 430,553 | 393,192 | 534,457 | 585,534 |
2015 | 2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|---|
January | 0 | 0 | 600 | 0 | 0 |
February | 0 | 0 | 0 | 0 | 0 |
March | 0 | 0 | 15,500 | 0 | 0 |
April | 0 | 0 | 0 | 0 | 1500 |
May | 0 | 0 | 0 | 0 | 0 |
June | 0 | 0 | 0 | 600 | 0 |
July | 0 | 0 | 0 | 0 | 0 |
August | 0 | 0 | 2000 | 0 | 22,000 |
September | 0 | 0 | 0 | 0 | 500 |
October | 2000 | 3000 | 0 | 0 | 0 |
November | 1500 | 0 | 0 | 1500 | 0 |
December | 0 | 1500 | 0 | 0 | 0 |
Total | 3500 | 4500 | 18,100 | 2100 | 24,000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Hernández, M.; Olcina, J.; Morote, Á.-F. Urban Stormwater Management, a Tool for Adapting to Climate Change: From Risk to Resource. Water 2020, 12, 2616. https://doi.org/10.3390/w12092616
Hernández-Hernández M, Olcina J, Morote Á-F. Urban Stormwater Management, a Tool for Adapting to Climate Change: From Risk to Resource. Water. 2020; 12(9):2616. https://doi.org/10.3390/w12092616
Chicago/Turabian StyleHernández-Hernández, María, Jorge Olcina, and Álvaro-Francisco Morote. 2020. "Urban Stormwater Management, a Tool for Adapting to Climate Change: From Risk to Resource" Water 12, no. 9: 2616. https://doi.org/10.3390/w12092616
APA StyleHernández-Hernández, M., Olcina, J., & Morote, Á.-F. (2020). Urban Stormwater Management, a Tool for Adapting to Climate Change: From Risk to Resource. Water, 12(9), 2616. https://doi.org/10.3390/w12092616