An Eighteen Year Temporal Trends Analysis of Bifenthrin Sediment Concentrations in California Waterbodies
Abstract
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shamim, M.T.; Hoffmann, M.D.; Melendez, J.; Ruhman, M.A. Ecological risk characterization for synthetic pyrethroids. In Synthetic Pyrethroid Occurrence and Behavior in Aquatic Environments; Gan, J., Spurlock, F., Hendley, P., Weston, D., Eds.; American Chemical Society: Washington, DC, USA, 2008; pp. 257–309. [Google Scholar]
- Spurlock, F.; Lee, M. Synthetic pyrethroid use patterns, properties, and environmental effects. In Synthetic Pyrethroid Occurrence and Behavior in Aquatic Environments; Gan, J., Spurlock, F., Hendley, P., Weston, D., Eds.; American Chemical Society: Washington, DC, USA, 2008; pp. 3–25. [Google Scholar]
- Aquatic Science Center. The Pulse of the Delta: Monitoring and Managing Water Quality in the Sacramento-San Joaquin Delta. Rethinking Water Quality Monitoring. Contribution 630; Aquatic Science Center: Oakland, CA, USA, 2012. [Google Scholar]
- Laskowski, D.A. Physical and chemical properties of pyrethroids. Rev. Environ. Contam. Toxicol. 2002, 174, 49–170. [Google Scholar] [PubMed]
- Weston, D.P.; Holmes, R.W.; You, J.; Lydy, M.J. Aquatic toxicity due to residential use of pyrethroid insecticides. Environ. Sci. Technol. 2005, 39, 9778–9784. [Google Scholar] [CrossRef] [PubMed]
- Budd, R.; Wang, D.; Ensminger, M.; Phillips, B. An evaluation of temporal and spatial trends of pyrethroid concentrations in California water bodies. Sci. Total Environ. 2020. [Google Scholar] [CrossRef]
- Fojut, T.L.; Tjeerdema, R.S. Water Quality Criteria for Bifenthrin; Updated report May 2015; Central Valley Regional Water Quality Control Board: Rancho Cordova, CA, USA, 2015.
- Hall, L.W., Jr.; Alden, R.W., III; Anderson, R.D.; Killen, W.D. Ranking the importance of benthic metrics and environmental stressors from over a decade of bioassessment multiple stressor studies in five California waterbodies. J. Environ. Sci. Health A 2019. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, R.D.; Coleman, D.E. Statistical Methods for Detection and Quantification of Environmental Contamination; John Wiley and Sons: New York, NY, USA, 2001. [Google Scholar]
- McNichols, R.J.; Davis, C.B. Statistical issues and problems in groundwater detection monitoring at hazardous waste facilities. Ground Water Monit. Rev. 1988, 8, 135–150. [Google Scholar] [CrossRef]
- Karickoff, S.W.; Brown, D.S.; Scott, T.A. Sorption of hydrophobic pollutants on natural sediments. Water Res. 1979, 13, 241–248. [Google Scholar] [CrossRef]
- Hall, L.W., Jr.; Anderson, R.D. Temporal Trends Analysis of Bifenthrin Sediment and Water Concentrations from Sites in the CEDEN Data Set (Task 4 in 2020 FMC Scope of Work); Report Prepared for FMC Corporation by the University of Maryland, College of Agriculture and Natural Resources, Agricultural Experiment Station; Wye Research and Education Center: Queenstown, MD, USA, 2020. [Google Scholar]
- Amweg, E.L.; Weston, D.P.; You, J.; Lydy, M.J. Pyrethroid insecticides and sediment toxicity in urban creeks for California and Tennessee. Environ. Sci. Technol. 2006, 40, 1700–1706. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef]
- Hall, L.W., Jr.; Anderson, R.D. Historical trends analysis of 2004 to 2009 toxicity and pesticide data for California’s Central Valley. J. Environ. Sci. Health A 2012, 47, 801–811. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Method 808 1BM, Organochlorine Pesticides by Gas Chromatography, Revision 1 Modified (Appendix IV); United States Environmental Protection Agency: Washington, DC, USA, 1996.
- Hall, L.W., Jr.; Perry, E.; Anderson, R.D.; Killen, W.D. A comparison of different statistical methods for addressing censored left data in temporal trends analysis of pyrethroids in a California stream. Rev. Arch. Env. Contam. Toxicol. 2020, in press. [Google Scholar]
- Hall, L.W., Jr.; Killen, W.D.; Anderson, R.D.; Alden, R.W., III. An Assessment of Benthic Communities with Concurrent Physical Habitat, Pryethroids, and Metals Analysis in Pleasant Grove Creek in 2019 and 2006-2019; Final Report for the Pyrethroid Working Group prepared by the University of Maryland; Wye Research and Education Center: Queenstown, MD, USA, 2019. [Google Scholar]
Site Name | % | Land | Regression | Correlation | Trend | ||
---|---|---|---|---|---|---|---|
NDs | Use | r2 | p | r | p | Slope | |
Alameda Creek E. of Alvarado Blvd | 0.0 | Urb | 0.773 | 0.004 | - | - | Down |
Alamo River at International Boundary | 90.0 | Urb | - | - | −0.685 | 0.025 | Down |
Ballona Creek Downstream of Sawtelle (Centinella) | 0.0 | Urb | 0.439 | 0.037 | - | - | Up |
Bear Creek near Bert Crane Road | 14.3 | Agr | 0.835 | 0.004 | - | - | Up |
Butte Slough upsteam of Pass Road Bridge | 0.0 | Agr | 0.612 | 0.038 | - | - | Down |
Calleguas Creek Below Camrosa WWTP, Site 6 | 11.1 | Agr | 0.738 | 0.003 | - | - | Up |
Coachella Valley Stormchannel (Ave 52) | 66.7 | Urb | 0.633 | 0.058 | - | - | Down |
Colusa Basin Drain Upstream at Knights Landing | 0.0 | Agr | 0.524 | 0.066 | - | - | Down |
Cosumnes River at Twin Cities Road | 12.5 | Agr | 0.391 | 0.097 | - | - | Down |
Dual Storm Drain at Opal and Parkside Way b | 0.0 | Urb | 0.577 | 0.080 | - | - | Down |
Espinosa Slough upstream of Alisal Slough | 0.0 | Agr | 0.792 | 0.007 | - | - | Down |
Guadalupe Cr at USGS Gaging Station 11169025 | 0.0 | Urb | 0.362 | 0.086 | - | - | Down |
Ingram Creek at River Road | 0.0 | Agr | 0.473 | 0.009 | - | - | Up |
Lagunitus Creek at Coast Guard Station | 75.0 | Agr | 0.535 | 0.039 | - | - | Down |
Laurel Creek at Pintail Drive | 0.0 | Urb | 0.626 | 0.011 | - | - | Down |
Llagas Creek at Southside | 33.3 | Agr/Urb | 0.653 | 0.052 | - | - | Down |
Marsh Creek at East Cypress Crossing | 0.0 | Agr/Urb | 0.468 | 0.029 | - | - | Down |
Mokelumne River at New Hope Road | 0.0 | Agr | 0.721 | 0.032 | - | - | Down |
Orestimba Creek at River Road | 47.6 | Agr | - | - | 0.577 | 0.006 | Up |
Oso Flaco Creek at Oso Flaco Lake Road | 0.0 | Agr | 0.714 | 0.017 | - | - | Down |
Palo Verde Lagoon (LG1) | 84.6 | Agr | 0.325 | 0.042 | - | - | Down |
Salsipuedes Creek downstream of Corralitos Creek | 71.4 | Agr/Urb | 0.559 | 0.053 | - | - | Down |
San Luis Obispo Creek at San Luis Bay Drive | 0.0 | Agr | 0.466 | 0.062 | - | - | Down |
Santa Clara River Estuary | 12.5 | Agr/Urb | 0.439 | 0.074 | - | - | Up |
Sutter Creek at Hwy 49 | 66.7 | Agr/Urb | 0.698 | 0.038 | - | - | Up |
Tembladero Slough at Monterey Dunes Way | 0.0 | Agr | 0.416 | 0.044 | - | - | Up |
Trout Creek (Truckee) near mouth | 33.3 | Agr | 0.677 | 0.044 | - | - | Down |
Walnut Creek at Concord Ave O.C | 0.0 | Urb | 0.434 | 0.054 | - | - | Down |
Z-Drain (Dixon RCD) | 40.0 | Agr | 0.376 | 0.059 | - | - | Up |
Stream System Name | # of Sites Per | Primary | Regression | Trend | Sig. | |
---|---|---|---|---|---|---|
Stream System | Land Use | r2 | p | Slope | Trend | |
Pajaro River | 4 | 0.013 | 0.752 | Up | No | |
Pleasant Grove System b | 21 | Urban | 0.330 | 0.082 | Down | Yes |
Sacramento River | 3 | 0.268 | 0.153 | Up | No | |
Salinas Streams c | 17 | 0.082 | 0.365 | Up | No | |
San Joaquin River | 3 | 0.145 | 0.399 | Down | No |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hall, L.W., Jr.; Anderson, R.D. An Eighteen Year Temporal Trends Analysis of Bifenthrin Sediment Concentrations in California Waterbodies. Water 2020, 12, 2402. https://doi.org/10.3390/w12092402
Hall LW Jr., Anderson RD. An Eighteen Year Temporal Trends Analysis of Bifenthrin Sediment Concentrations in California Waterbodies. Water. 2020; 12(9):2402. https://doi.org/10.3390/w12092402
Chicago/Turabian StyleHall, Lenwood W., Jr., and Ronald D. Anderson. 2020. "An Eighteen Year Temporal Trends Analysis of Bifenthrin Sediment Concentrations in California Waterbodies" Water 12, no. 9: 2402. https://doi.org/10.3390/w12092402
APA StyleHall, L. W., Jr., & Anderson, R. D. (2020). An Eighteen Year Temporal Trends Analysis of Bifenthrin Sediment Concentrations in California Waterbodies. Water, 12(9), 2402. https://doi.org/10.3390/w12092402