Stable Isotope Hydrology of Cave Groundwater and Its Relevance for Speleothem-Based Paleoenvironmental Reconstruction in Croatia
Abstract
:1. Introduction
- Systematic sampling with at least one-year of continuous monitoring and monthly sampling of rain and drip water was applied within three research projects that included Manita peć (MP), Strašna peć (SP) and Špilja u Zubu Buljme (ZB) caves [35]; Upper Barać (GB), Lower Barać (DB) and Lower Cerovačka (DC) caves [36]; and Nova Grgosova (NG), Lokvarka (LOK) and Modrič (MOD) caves [37,38].
- Semi-continuous sampling was performed in a study of the Velebita Cave System (VEL), and the Sirena (SIR) and Lukina jama (LUK) pits [39].
2. Study Area
3. Monitoring and Sampling Methodology
4. Results and Discussion
4.1. Moisture Sources Affecting Isotopic Composition
4.2. Precipitation-Discharge Relationship and Drip Water Homogenization
4.3. Isotopic Composition of Drip Water
4.4. Preservation of Altitude and Latitude Effects in Drip Water
4.5. Isotope Fractionation during Carbonate Formation
5. Conclusions
- Nine constructed local meteoric water lines generally show influence of both Atlantic and Western Mediterranean vapor masses, and individually clearly depict particular regions with enhanced secondary evaporation.
- Drip waters in mountain and continental caves with MAAT < 10 °C drip water δ18O mostly resemble the amount-weighted annual mean δ18O of precipitation. These are the caves where the soil and epikarst evaporation has decreased, and groundwater is well mixed with a dampening of individual extreme events. Thus, in near-equilibrium calcite crystallization, speleothem δ18O variations most faithfully reflect past meteoric precipitation and air temperature.
- In warmer caves, drip water δ18O is usually more negative than amount-weighted annual mean precipitation δ18O due to the uneven seasonal recharge and near-surface evaporation. However, when interpreting the interglacial-glacial transition it must be taken into consideration that MAATs have decreased to those of today’s ‘cold’ caves and the isotopic signal probably directly reflects recharge.
- The precipitation altitude effect on seaward steep coastal mountains is higher than globally estimated, enhanced by sudden change from Mediterranean climate (Csa and Csb) to mountain (Df) climate. In drip water, the altitudinal gradient is also present, but less expressed.
- The latitude effect in drip water is present, but often overprinted by the altitudinal effect.
- This spatially small, but geographically very diverse area does not allow generalization; frequent exceptions of anticipated settings require thorough monitoring of surface and cave meteorological background since cave morphology (ascending/descending passages) may alter the cave temperature from those equal to the surface MAAT. Systematic analyses of drip water geochemistry may also reveal potentially different infiltration elevations, while monitoring of drip intensity provides information on aquifer architecture responsible for the water homogenization. Preferably, all of these steps should precede speleothem collection in order to avoid their oversampling.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Brantley, S.L.; Goldhaber, M.B.; Ragnarsdottir, K.V. Crossing Disciplines and Scales to Understand the Critical Zone. Elements 2007, 3, 307–314. [Google Scholar] [CrossRef]
- Regattieri, E.; Zanchetta, G.; Isola, I.; Zanella, E.; Drysdale, R.N.; Hellstrom, J.C.; Zerboni, A.; Dallai, L.; Tema, E.; Lanci, L.; et al. Holocene Critical Zone dynamics in an Alpine catchment inferred from a speleothem multiproxy record: Disentangling climate and human influences. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairchild, I.J.; Baker, A. Speleothem Science: From Process to Past Environments; Wiley-Blackwell: Chichester, UK, 2012. [Google Scholar]
- Hendy, C.H.; Wilson, A.T. Palaeoclimatic Data from Speleothems. Nature 1968, 219, 48–51. [Google Scholar] [CrossRef]
- Hendy, C.H. The Isotopic Geochemistry of Speleothems—I. The Calculation of the Effects of Different Modes of Formation on the Isotopic Composition of Speleothems and Their Applicability as Palaeoclimatic Indicators. Geochim. Cosmochim. Acta 1971, 35, 801–824. [Google Scholar] [CrossRef]
- Henderson, G.M. CLIMATE: Caving In to New Chronologies. Science 2006, 313, 620–622. [Google Scholar] [CrossRef]
- McDermott, F. Palaeo-Climate Reconstruction from Stable Isotope Variations in Speleothems: A Review. Quat. Sci. Rev. 2004, 23, 901–918. [Google Scholar] [CrossRef]
- Badino, G. Models of temperature, entropy production and convective airflow in caves. Geol. Soc. London Spec. Publ. 2018, 466, 359–379. [Google Scholar] [CrossRef]
- Baldini, J.; McDermott, F.; Fairchild, I.J. Spatial Variability in Cave Drip Water Hydrochemistry: Implications for Stalagmite Paleoclimate Records. Chem. Geol. 2006, 235, 390–404. [Google Scholar] [CrossRef]
- Fuller, L.; Baker, A.; Fairchild, I.J.; Spötl, C.; Marca-Bell, A.; Rowe, P.; Dennis, P.F. Isotope Hydrology of Dripwaters in a Scottish Cave and Implications for Stalagmite Palaeoclimate Research. Hydrol. Earth Syst. Sci. 2008, 12, 1065–1074. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-T.; O’Neil, J.R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta 1997, 61, 3461–3475. [Google Scholar] [CrossRef]
- Hartmann, A.; Baker, A. Modelling Karst Vadose Zone Hydrology and Its Relevance for Paleoclimate Reconstruction. Earth Sci. Rev. 2017, 172, 178–192. [Google Scholar] [CrossRef]
- Banak, A.; Mandić, O.; Kovačić, M.; Pavelić, D. Late Pleistocene Climate History of the Baranja Loess Plateau—Evidence from the Zmajevac Loess-Paleosol Section (Northeastern Croatia). Geol. Croat. 2012, 65, 411–422. [Google Scholar] [CrossRef]
- Wacha, L.; Galović, L.; Koloszár, L.; Magyari, Á.; Chikán, G.; Marsi, I. The Chronology of the Šarengrad II Loess-Palaeosol Section (Eastern Croatia). Geol. Croat. 2013, 66, 191–203. [Google Scholar] [CrossRef]
- Wacha, L.; Rolf, C.; Hambach, U.; Frechen, M.; Galović, L.; Duchoslav, M. The Last Glacial Aeolian Record of the Island of Susak (Croatia) as Seen from a High-Resolution Grain-Size and Rock Magnetic Analysis. Quat. Int. 2018, 494, 211–224. [Google Scholar] [CrossRef]
- Durn, G.; Rubinić, V.; Wacha, L.; Patekar, M.; Frechen, M.; Tsukamoto, S.; Tadej, N.; Husnjak, S. Polygenetic Soil Formation on Late Glacial Loess on the Susak Island Reflects Paleo-Environmental Changes in the Northern Adriatic Area. Quat. Int. 2018, 494, 236–247. [Google Scholar] [CrossRef]
- Horvatinčić, N.; Sironić, A.; Barešić, J.; Sondi, I.; Krajcar Bronić, I.; Borković, D. Mineralogical, Organic and Isotopic Composition as Palaeoenvironmental Records in the Lake Sediments of Two Lakes, the Plitvice Lakes, Croatia. Quat. Int. 2018, 494, 300–313. [Google Scholar] [CrossRef] [Green Version]
- Galović, I.; Mihalić, K.C.; Ilijanić, N.; Miko, S.; Hasan, O. Diatom Responses to Holocene Environmental Changes in a Karstic Lake Vrana in Dalmatia (Croatia). Quat. Int. 2018, 494, 167–179. [Google Scholar] [CrossRef]
- Ilijanić, N.; Miko, S.; Hasan, O.; Bakrač, K. Holocene Environmental Record from Lake Sediments in the Bokanjačko Blato Karst Polje (Dalmatia, Croatia). Quat. Int. 2018, 494, 66–79. [Google Scholar] [CrossRef]
- Bakrač, K.; Ilijanić, N.; Miko, S.; Hasan, O. Evidence of Sapropel S1 Formation from Holocene Lacustrine Sequences in Lake Vrana in Dalmatia (Croatia). Quat. Int. 2018, 494, 5–18. [Google Scholar] [CrossRef]
- Felja, I.; Fontana, A.; Furlani, S.; Bajraktarević, Z.; Paradžik, A.; Topalović, E.; Rossato, S.; Ćosović, V.; Juračić, M. Environmental Changes in the Lower Mirna River Valley (Istria, Croatia) during Upper Holocene. Geol. Croat. 2015, 68. [Google Scholar] [CrossRef]
- Kaniewski, D.; Marriner, N.; Morhange, C.; Rius, D.; Carre, M.-B.; Faivre, S.; Van Campo, E. Croatia’s Mid-Late Holocene (5200-3200 BP) Coastal Vegetation Shaped by Human Societies. Quat. Sci. Rev. 2018, 200, 334–350. [Google Scholar] [CrossRef]
- Brunović, D.; Miko, S.; Ilijanić, N.; Peh, Z.; Hasan, O.; Kolar, T.; Šparica Miko, M.; Razum, I. Holocene Foraminiferal and Geochemical Records in the Coastal Karst Dolines of Cres Island, Croatia. Geol. Croat. 2019, 72, 19–42. [Google Scholar] [CrossRef]
- Faivre, S.; Bakran-Petricioli, T.; Barešić, J.; Horvatić, D.; Macario, K. Relative Sea-Level Change and Climate Change in the Northeastern Adriatic during the Last 1.5 Ka (Istria, Croatia). Quat. Sci. Rev. 2019, 222, 1–17. [Google Scholar] [CrossRef]
- Surić, M. Speleothem-Based Quaternary Research in Croatian Karst—A Review. Quat. Int. 2018, 490, 113–122. [Google Scholar] [CrossRef]
- Krajcar Bronić, I.; Horvatinčić, N.; Obelić, B. Two Decades of Environmental Isotope Records in Croatia: Reconstruction of the Past and Prediction of Future Levels. Radiocarbon 1998, 40, 399–416. [Google Scholar] [CrossRef] [Green Version]
- Krajcar Bronić, I.; Vreča, P.; Horvatinčić, N.; Barešić, J.; Obelić, B. Distribution of hydrogen, oxygen and carbon isotopes in the atmosphere of Croatia and Slovenia. Arch. Ind. Hyg. Toxicol. 2006, 57, 23–29. [Google Scholar]
- Krajcar Bronić, I.; Barešić, J.; Borković, D.; Sironić, A.; Mikelić, I.L.; Vreča, P. Long-Term Isotope Records of Precipitation in Zagreb, Croatia. Water 2020, 12, 226. [Google Scholar] [CrossRef] [Green Version]
- Horvatinčić, N.; Krajcar Bronić, I.; Obelić, B.; Bistrović, R. Long-time atmospheric tritium record in Croatia. Acta Geol. Hung. 1996, 39, 81–84. [Google Scholar]
- Horvatinčić, N.; Krajcar Bronić, I.; Barešić, J.; Obelić, B.; Vidič, S. Tritium and stable isotope distribution in the atmosphere at the coastal region of Croatia. In Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate; IAEA-TECDOC-1453; Gourcy, L., Ed.; IAEA: Vienna, Austria, 2005; pp. 37–50. [Google Scholar]
- Barešić, J.; Horvatinčić, N.; Krajcar Bronić, I.; Obelić, B.; Vreča, P. Stable Isotope Composition of Daily and Monthly Precipitation in Zagreb. Isot. Environ. Health Stud. 2006, 42, 239–249. [Google Scholar] [CrossRef]
- Vreča, P.; Krajcar Bronić, I.; Horvatinčić, N.; Barešić, J. Isotopic Characteristics of Precipitation in Slovenia and Croatia: Comparison of Continental and Maritime Stations. J. Hydrol. 2006, 330, 457–469. [Google Scholar] [CrossRef]
- Brkić, Ž.; Kuhta, M.; Hunjak, T.; Larva, O. Regional Isotopic Signatures of Groundwater in Croatia. Water 2020, 12, 1983. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Surić, M.; Lončarić, R.; Lončar, N.; Buzjak, N.; Bajo, P.; Drysdale, R.N. Isotopic Characterization of Cave Environments at Varying Altitudes on the Eastern Adriatic Coast (Croatia)—Implications for Future Speleothem-Based Studies. J. Hydrol. 2017, 545, 367–380. [Google Scholar] [CrossRef]
- Czuppon, G.; Bočić, N.; Buzjak, N.; Óvári, M.; Molnár, M. Monitoring in the Barać and Lower Cerovačka Caves (Croatia) as a Basis for the Characterization of the Climatological and Hydrological Processes That Control Speleothem Formation. Quat. Int. 2018, 494, 52–65. [Google Scholar] [CrossRef]
- Rudzka, D.; Mcdermott, F.; Surić, M. A Late Holocene Climate Record in Stalagmites from Modrič Cave (Croatia): Holocene Climate Record from Croatian Stalagmites. J. Quat. Sci. 2012, 27, 585–596. [Google Scholar] [CrossRef] [Green Version]
- Surić, M.; Lončarić, R.; Bočić, N.; Lončar, N.; Buzjak, N. Monitoring of Selected Caves as a Prerequisite for the Speleothem-Based Reconstruction of the Quaternary Environment in Croatia. Quat. Int. 2018, 494, 263–274. [Google Scholar] [CrossRef]
- Paar, D.; Mance, D.; Stroj, A.; Pavić, M. Northern Velebit (Croatia) Karst Hydrological System: Results of a Preliminary 2H and 18O Stable Isotope Study. Geol. Croat. 2019, 72, 205–213. [Google Scholar] [CrossRef]
- Lončar, N. Isotopic Composition of the Speleothems from the Eastern Adriatic Islands Caves as an Indicator of Paleoenvironmental Changes. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2012. (In Croatian). [Google Scholar]
- Lončar, N.; Bar-Matthews, M.; Ayalon, A.; Faivre, S.; Surić, M. Early and Mid-Holocene environmental conditions in the Eastern Adriatic recorded in speleothems from Mala špilja Cave and Vela špilja Cave (Mljet Island, Croatia). Acta Carsol. 2017, 46, 229–249. [Google Scholar] [CrossRef] [Green Version]
- Lončar, N.; Bar-Matthews, M.; Ayalon, A.; Faivre, S.; Surić, M. Holocene Climatic Conditions in the Eastern Adriatic Recorded in Stalagmites from Strašna Peć Cave (Croatia). Quat. Int. 2019, 508, 98–106. [Google Scholar] [CrossRef]
- Surić, M.; Roller-Lutz, Z.; Mandić, M.; Krajcar Bronić, I.; Juračić, M. Modern C, O, and H Isotope Composition of Speleothem and Dripwater from Modrič Cave, Eastern Adriatic Coast (Croatia). Int. J. Speleol. 2010, 39, 91–97. [Google Scholar] [CrossRef]
- Bognar, A.; Faivre, S.; Buzjak, N.; Pahernik, M.; Bočić, N. Recent Landform Evolution in the Dinaric and Pannonian Regions of Croatia. In Recent Landform Evolution; Lóczy, D., Stankoviansky, M., Kotarba, A., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 313–344. [Google Scholar] [CrossRef]
- Hartmann, A.; Gleeson, T.; Rosolem, R.; Pianosi, F.; Wada, Y.; Wagener, T. A Large-Scale Simulation Model to Assess Karstic Groundwater Recharge over Europe and the Mediterranean. Geosci. Model. Dev. 2015, 8, 1729–1746. [Google Scholar] [CrossRef] [Green Version]
- Bočić, N. Krš—definicija, svojstva, distribucija. In Speleologija, 2nd ed.; Rnjak, G., Ed.; Speleološko društvo Velebit, Hrvatski planinarski savez, Hrvatska gorska služba spašavanja: Zagreb, Croatia, 2017; pp. 557–570. [Google Scholar]
- Selak, L. Monitoring okolišnih parametara u turistički uređenoj špilji—primjer Baraćevih špilja kod Rakovice. Master’s Thesis, University of Zagreb, Zagreb, Croatia, February 2019. [Google Scholar]
- Paar, D.; Ujević, M.; Bakšić, D.; Lacković, D.; Čop, A.; Radolić, V. Physical and Chemical Research in Velebita Pit (Croatia). Acta Carsol. 2008, 37, 273–278. [Google Scholar] [CrossRef]
- Paar, D.; Buzjak, N.; Bakšić, D.; Radolić, V. Physical research in Croatia’s deepest cave system Lukina jama-Trojama, Mt.Velebit. In Proceedings of the 16th International Congress of Speleology, Brno, Czech Republic, 21–28 July 2013. [Google Scholar]
- Paar, D.; Dubovečak, V. Exploration of deep pits of the Northern Velebit National Park. In Scientific Report for Northern Velebit National Park; NP Sjeverni Velebit: Krasno, Croatia, 2014; p. 35. [Google Scholar]
- Stroj, A.; Paar, D. Water and Air Dynamics within a Deep Vadose Zone of a Karst Massif: Observations from the Lukina Jama–Trojama Cave System (−1431 m) in Dinaric Karst (Croatia). Hydrol. Process. 2019, 33, 551–561. [Google Scholar] [CrossRef]
- CMHS, 2020 Croatian Meteorological and Hydrological Service.
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55. [Google Scholar] [CrossRef]
- McCabe, G.J.; Markstrom, S.L. A Monthly Water-Balance Model Driven by a Graphical User Interface; USGS Open File Report: Reston, VA, USA, 2007. [Google Scholar]
- Domínguez-Villar, D. Heat flux. In Speleothem Science: From Process to Past Environments; Fairchild, I.J., Baker, A., Eds.; Wiley-Blackwell: Chichester, UK, 2012; pp. 137–145. [Google Scholar]
- Gröning, M.; Lutz, H.O.; Roller-Lutz, Z.; Kralik, M.; Gourcy, L.; Pöltenstein, L. A Simple Rain Collector Preventing Water Re-Evaporation Dedicated for δ18O and δ2H Analysis of Cumulative Precipitation Samples. J. Hydrol. 2012, 448–449, 195–200. [Google Scholar] [CrossRef]
- Domínguez-Villar, D.; Lojen, S.; Krklec, K.; Kozdon, R.; Edwards, R.L.; Cheng, H. Ion Microprobe δ18O Analyses to Calibrate Slow Growth Rate Speleothem Records with Regional δ18O Records of Precipitation. Earth Planet. Sci. Lett. 2018, 482, 367–376. [Google Scholar] [CrossRef]
- Baker, A.; Barnes, W.; Smart, P. Variations in the discharge and organic matter content of stalagmite drip waters in Lower Cave, Bristol. Hydrol. Process. 1997, 11, 1541–1555. [Google Scholar] [CrossRef]
- Collister, C.; Mattey, D. High Resolution Measurement of Water Drip Rates in Caves Using an Acoustic Drip Counter. AGU Fall Meet. 2005, 31. [Google Scholar]
- Scholz, D.; Frisia, S.; Borsato, A.; Spötl, C.; Fohlmeister, J.; Mudelsee, M.; Miorandi, R.; Mangini, A. Holocene Climate Variability in North-Eastern Italy: Potential Influence of the NAO and Solar Activity Recorded by Speleothem Data. Clim. Past 2012, 8, 1367–1383. [Google Scholar] [CrossRef] [Green Version]
- Wassenburg, J.A.; Immenhauser, A.; Richter, D.K.; Niedermayr, A.; Riechelmann, S.; Fietzke, J.; Scholz, D.; Jochum, K.P.; Fohlmeister, J.; Schröder-Ritzrau, A.; et al. Moroccan Speleothem and Tree Ring Records Suggest a Variable Positive State of the North Atlantic Oscillation during the Medieval Warm Period. Earth Planet. Sci. Lett. 2013, 375, 291–302. [Google Scholar] [CrossRef]
- Baker, A.; Hellstrom, J.; Kelly, B.F.J.; Mariethoz, G.; Trouet, V. A Composite Annual-Resolution Stalagmite Record of North Atlantic Climate over the Last Three Millennia. Sci. Rep. 2015, 5, 10307. [Google Scholar] [CrossRef] [Green Version]
- Luetscher, M.; Boch, R.; Sodemann, H.; Spötl, C.; Cheng, H.; Edwards, R.L.; Frisia, S.; Hof, F.; Müller, W. North Atlantic Storm Track Changes during the Last Glacial Maximum Recorded by Alpine Speleothems. Nat. Commun. 2015, 6, 6344. [Google Scholar] [CrossRef] [Green Version]
- Gat, J.R.; Carmi, I. Effect of climate changes on the precipitation patterns and isotopic composition of water in a climate transition zone: Case of the Eastern Mediterranean Sea area. In The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources, Proceedings of the Vancouver Symposium, Vancouver, Canada, August 1987; IAHS Publication: Vancouver, WA, Canada; pp. 513–523.
- Gat, J.R.; Klein, B.; Kushnir, Y.; Roether, W.; Wernli, H.; Yam, R.; Shemesh, A. Isotope Composition of Air Moisture over the Mediterranean Sea: An Index of the Air-Sea Interaction Pattern. Tellus B Chem. Phys. Meteorol. 2003, 55, 953–965. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable Isotopes in Precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Celle-Jeanton, H.; Travi, Y.; Blavoux, B. Isotopic Typology of the Precipitation in the Western Mediterranean Region at Three Different Time Scales. Geophys. Res. Lett. 2001, 28, 1215–1218. [Google Scholar] [CrossRef]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology, 1st ed.; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar] [CrossRef]
- Yonge, C.J.; Ford, D.C.; Gray, J.; Schwarcz, H.P. Stable Isotope Studies of Cave Seepage Water. Chem. Geol. Isot. Geosci. Sect. 1985, 58, 97–105. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Ayalon, A.; Matthews, A.; Sass, E.; Halicz, L. Carbon and Oxygen Isotope Study of the Active Water-Carbonate System in a Karstic Mediterranean Cave: Implications for Paleoclimate Research in Semiarid Regions. Geochim. Cosmochim. Acta 1996, 60, 337–347. [Google Scholar] [CrossRef]
- Van Beynen, P.; Febbroriello, P. Seasonal Isotopic Variability of Precipitation and Cave Drip Water at Indian Oven Cave, New York. Hydrol. Process. 2006, 20, 1793–1803. [Google Scholar] [CrossRef]
- Beddows, P.A.; Mandić, M.; Ford, D.C.; Schwarcz, H.P. Oxygen and Hydrogen Isotopic Variations between Adjacent Drips in Three Caves at Increasing Elevation in a Temperate Coastal Rainforest, Vancouver Island, Canada. Geochim. Cosmochim. Acta 2016, 172, 370–386. [Google Scholar] [CrossRef]
- Markowska, M.; Baker, A.; Treble, P.C.; Andersen, M.S.; Hankin, S.; Jex, C.N.; Tadros, C.V.; Roach, R. Unsaturated Zone Hydrology and Cave Drip Discharge Water Response: Implications for Speleothem Paleoclimate Record Variability. J. Hydrol. 2015, 529, 662–675. [Google Scholar] [CrossRef]
- White, W.B. Conceptual models for karstic aquifers. In Karst Modelling: Special Publication 5; Palmer, A.N., Palmer, M.V., Sasowsky, I.D., Eds.; Karst Waters Institute Special Publication, The Karst Waters Institute: Charles Town, WV, USA, 1999; pp. 11–16. [Google Scholar]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Chichester, UK, 2007; p. 578. [Google Scholar]
- Smart, P.L.; Friedrich, H. Water movement and storage in the unsaturated zone of a maturely karstified aquifer, Mendip Hills, England. In Proceedings of the Environmental Problems in Karst Terrains and Their Solutions Conference, Bowling Green, KY, USA, 28–30 October 1986; National Water Well Association: Bowling Green, KY, USA, 1987; pp. 57–87. [Google Scholar]
- Baker, A.; Hartmann, A.; Duan, W.; Hankin, S.; Comas-Bru, L.; Cuthbert, M.O.; Treble, P.C.; Banner, J.; Genty, D.; Baldini, L.M.; et al. Global Analysis Reveals Climatic Controls on the Oxygen Isotope Composition of Cave Drip Water. Nat. Commun. 2019, 10, 2984–2987. [Google Scholar] [CrossRef]
- Buzjak, N.; Bočić, N.; Paar, D.; Bakšić, D.; Dubovečak, V. Ice Caves in Croatia. Ice Caves 2018, 335–369. [Google Scholar] [CrossRef]
- Sharp, Z. Principles of Stable Isotope Geochemistry, 1st ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. Geoph. Monog. 1993, 78, 1–36. [Google Scholar]
- Johnston, V.E.; Borsato, A.; Spötl, C.; Frisia, S.; Miorandi, R. Stable isotopes in caves over altitudinal gradients: Fractionation behaviour and inferences for speleothem sensitivity to climate change. Clim. Past 2013, 9, 99–118. [Google Scholar] [CrossRef] [Green Version]
- Nehme, C.; Verheyden, S.; Nader, F.H.; Adjizian-Gerard, J.; Genty, D.; De Bondt, K.; Minster, B.; Salem, G.; Verstraten, D.; Clayes, P. Cave dripwater isotopic signals related to the altitudinal gradient of Mount-Lebanon: Implication for speleothem studies. Int. J. Speleol. 2019, 48, 63–74. [Google Scholar] [CrossRef]
- Coplen, T.B.; Kendall, C.; Hopple, J. Comparison of stable isotope reference samples. Nature 1983, 302, 236–238. [Google Scholar] [CrossRef]
- Tremaine, D.M.; Froelich, P.N.; Wang, Y. Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system. Geochim. Cosmochim. Acta 2011, 75, 4929–4950. [Google Scholar] [CrossRef]
- Daëron, M.; Drysdale, R.N.; Peral, M.; Huyghe, D.; Blamart, D.; Coplen, T.B.; Lartaud, F.; Zanchetta, G. Most Earth-surface calcites precipitate out of isotopic equilibrium. Nat. Commun. 2019, 10, 429. [Google Scholar] [CrossRef] [Green Version]
- Friedman, I.; O’Neil, J.R. Compilation of stable isotope fractionation factors of geochemical interest. In Data of Geochemistry, 6th ed.; Fleisher, M., Chap, K.K., Eds.; US Geological Survey Professional Paper: Washington, DC, USA, 1977; Volume 440, pp. 1–12. [Google Scholar]
- Coplen, T.B. Calibration of the calcite-water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim. Cosmochim. Acta 2007, 71, 3948–3957. [Google Scholar] [CrossRef]
- Mandić, M.; Bojić, D.; Roller-Lutz, Z.; Lutz, H.O.; Krajcar Bronić, I. Note on the spring region of Gacka River (Croatia). Isot. Environ. Health S. 2008, 44, 201–208. [Google Scholar] [CrossRef]
- Czuppon, G.; Demény, A.; Leél-Őssy, S.; Óvari, M.; Molnár, M.; Stieber, J.; Kármán, K.; Kiss, K.; Haszpra, L. Cave monitoring in Béke and Baradla Caves (NE Hungary): Implications for condition of formation cave carbonates. Int. J. Speleol. 2018, 47, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Drysdale, R.N.; Hellstrom, J.; Zanchetta, G.; Fallick, A.; Goñi, M.F.S.; Couchoud, I.; McDonald, J.; Maas, R.; Lohmann, G.; Isola, I. Evidence for obliquity forcing of glacial termination II. Science 2009, 325, 1527–1531. [Google Scholar] [CrossRef] [Green Version]
Cave | Location | Acronym | Entrance | Clim. Type | Aver. Temp. (°C) | Monitoring/Sampling Period | Number of Drip Water Samples | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|
Lat. (N) | Long. (E) | Alt. (m) | ||||||||
Nova Grgosova | Samobor Hills | NG | 45°49′ | 15°41′ | 239 | Cfb | 11.2 | November 2014–November 2015 | 36 | [25] |
Lokvarka | Gorski Kotar | LOK | 45°22′ | 14°46′ | 780 | Cfb | 7.5 | November 2014–November 2015 | 24 | [25] |
Gornja Baraćeva | Kordun | GB | 44°59′ | 15°43′ | 331.5 | Cfb | 10.2* | April 2013–July 2014 | 24 | [36] |
Donja Baraćeva | Kordun | DB | 44°59′ | 15°43′ | 309.5 | Cfb | 10.1 * | April 2013–July 2014 | 28 | [36] |
Sirena | N Mt Velebit | SIR | 44°46′ | 14°59′ | 1500 | Df | 1.7–3.6 ** | 2 August 2013 | 1 | [39] |
Lukina jama | N Mt Velebit | LUK | 44°46′ | 15°02′ | 1450 | Df | 0–5 ** | 5 August 2013 | 1 | [39] |
Velebita Cave System | N Mt Velebit | VEL | 44°45′ | 14°59′ | 1550 | Df | 3.5–5.5 ** | 31 July2012–4 August 2013 1 August 2013 | 18 | [39] |
Medvjeđa špilja | Lošinj Island | MED | 44°36′ | 14°24′ | 17.5 | Cfa | 15 | 13 December 2009–10 January 2010 | 1 | [41] |
Špilja u Zubu Buljme | S Mt Velebit | ZB | 44°22′ | 15°28′ | 1250 | Df | 4.0 | July 2012–July 2013 | 11 | [35] |
Manita peć | S Mt Velebit | MP | 44°19′ | 15°29′ | 570 | Cfa | 9.0 | July 2012–July 2013 | 32 | [35] |
Donja Cerovačka | Lika | DC | 44°16′ | 15°53′ | 630 | Cfb | 6.8 | April 2013–January 2015 | 21 | [36] |
Modrič | Mt Velebit foothill | MOD | 44°15′ | 15°32′ | 32 | Cfa | 16.6 | June 2007–September 2007 | 3 | [43] |
July 2007–May 2008 | 1 | |||||||||
November 2007–May 2008 | 1 | |||||||||
June 2008–September 2010 | 54 | [37] | ||||||||
November 2014–November 2018 | 93 | [25] | ||||||||
Kraljičina spilja | Vis Island | KRA | 44°04′ | 16°06′ | 70 | Csa | 14.1 | 19–20 May2010 | 1 | [41] |
Strašna peć | Dugi otok Island | SP | 44°00′ | 15°02′ | 74 | Csa | 11.1 | 20 June–29 September 2010 | 2 | [41] |
July 2012–January 2014 | 36 | [35] | ||||||||
Špilja u Vrdolju | Brač Island | VRD | 43°21′ | 16°36′ | 310 | Csa | 13.5 | 18–19 May2010 | 1 | [41] |
Velika špilja | Mljet Island | VML | 42°46′ | 17°28′ | 90 | Csa | 14 | 20–22 February 2010 | 2 | [41] |
Mala špilja | Mljet Island | MML | 42°46′ | 17°29′ | 60 | Csa | 13 | 20–22 February 2010 | 1 | [41] |
Precipitation | Drip Water | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cave | Maximum | Minimum | Amplitude | Drip Site | Maximum | Minimum | Amplitude | ||||||
δ18O | δ2H | δ18O | δ2H | δ18O | δ2H | δ18O | δ2H | δ18O | δ2H | δ18O | δ2H | ||
NG | −4.6 | −24.6 | −13.5 | −93.5 | 8.9 | 68.9 | NG-1W | −9.5 | −63.1 | −10.1 | −65.8 | 0.6 | 2.7 |
NG-2W | −9.6 | −63.3 | −10.0 | −65.6 | 0.4 | 2.3 | |||||||
NG-3W | −9.6 | −63.1 | −9.9 | −64.1 | 0.3 | 1.0 | |||||||
LOK | −5.3 | −29.0 | −13.9 | −96.8 | 8.6 | 67.8 | LOK-1W | −7.9 | −45.9 | −9.7 | −58.5 | 1.3 | 12.6 |
LOK-2W | −8.5 | −50.2 | −8.8 | −52.1 | 0.3 | 1.9 | |||||||
GB/DB | −5.4 | −34.6 | −12.9 | −86.8 | 7.5 | 52.2 | GB-1 | −9.5 | −64.0 | −11.0 | −74.2 | 1.5 | 10.2 |
GB-2 | −10.2 | −70.7 | −11.8 | −82.0 | 1.6 | 11.3 | |||||||
DB-1 | −10.0 | −70.7 | −11.1 | −77.1 | 1.1 | 6.4 | |||||||
DB-2 | −10.0 | −71.5 | −10.8 | −74.2 | 0.8 | 2.7 | |||||||
ZB | −5.9 | −30.9 | −13.4 | −93.2 | 7.5 | 62.3 | ZBW | −7.4 | −41.2 | −8.2 | −48.4 | 0.8 | 7.2 |
MP | −3.4 | −16.3 | −9.4 | −58.9 | 6.0 | 42.6 | MP-1W | −6.3 | −36.1 | −7.9 | −48.4 | 1.6 | 12.3 |
MP-2W | −6.6 | −36.3 | −7.5 | −43.1 | 0.9 | 6.8 | |||||||
MP-3W | −6.4 | −33.3 | −7.7 | −47.9 | 1.3 | 14.6 | |||||||
DC | −5.3 | −32.3 | −10.7 | −73.9 | 5.4 | 41.6 | DC-2 | −7.5 | −46.0 | −8.4 | −51.8 | 0.9 | 5.8 |
MOD | −3.2 | −17.0 | −8.6 | −57.1 | 5.4 | 40.1 | MOD-21W | −5.7 | −33.6 | −6.8 | −41.7 | 1.1 | 8.1 |
MOD-22W | −3.9 | −17.0 | −6.0 | −35.3 | 2.1 | 18.3 | |||||||
−1.2 | −11.1 | −9.8 | −60.9 | 8.6 | 49.8 | MOD-31W | −5.6 | −34.1 | −6.3 | −38.6 | 0.7 | 4.5 | |
MOD-32W | −5.9 | −35.7 | −6.4 | −38.8 | 0.5 | 3.1 | |||||||
SP | −3.8 | −23.2 | −8.3 | −50.6 | 4.5 | 27.4 | SP1W | −6.0 | −32.3 | −6.8 | −35.8 | 0.8 | 3.5 |
SPNW | −6.2 | −33.2 | −6.7 | −38.8 | 0.5 | 5.6 |
Cave | δ18Oprec | δ2Hprec | δ18Odrip | δ2Hdrip | Δδ18Oprec-drip | Δδ2Hprec-drip | d-excess-Prec. | d-excess-Drip |
---|---|---|---|---|---|---|---|---|
NG | −9.1 | −57.1 | −9.8 | −64.3 | 0.7 | 7.2 | 15.6 | 14.3 |
−9.8 | −63.5 | 0.7 | 6.4 | 14.9 | ||||
LOK | −8.8 | −51.8 | −8.9 | −52.8 | 0.1 | 1.0 | 18.6 | 18.5 |
−8.6 | −50.9 | −0.2 | −0.9 | 18.0 | ||||
GB-DB | −9.5 | −64.9 | −10.7 ± 0.3 | −73.7 ± 2.1 | 1.2 ± 0.3 | 8.8 ± 2.1 | 11.0 | 12.0 |
−10.6 ± 0.2 | −72.7 ± 0.7 | 1.1 ± 0.2 | 7.8 ± 0.7 | |||||
−10.3 ± 0.5 | −70.2 ± 3.0 | 0.8 ± 0.5 | 5.3 ± 3.0 | |||||
−10.7 ± 0.5 | −73.7 ± 3.5 | 1.2 ± 0.5 | 8.8 ± 3.5 | |||||
VEL-S 1 | −9.5 | −61.9 | −9.6 ± 0.13 | −61.9 ± 0.7 3 | 0.1 ± 0.1 | 0.0 ± 0.7 | 13.7 | 15.0 ± 0.5 |
VEL-O 2 | −9.4 | −60.9 | 0.2 ± 0.1 | 1.0 ± 0.7 | 13.1 | |||
ZB | −9.9 | −62.2 | −7.8 ± 0.3 | −44.6 ± 2.5 | −1.2 ± 0.3 | −17.6 ± 2.5 | 16.6 | 16.3 ± 0.6 |
MP | −7.5 | −44.3 | −7.3 | −42.0 | −0.2 | −2.3 | 15.5 | 16.2 |
DC | −8.6–−7.5 4 | −56.5–−48.1 4 | −8.0 ± 0.3 | −49.0 ± 1.7 | −0.6–0.5 | −7.5–0.9 | 12.0–13.0 | 15.0 |
MOD | −5.5 | −33.3 | −6.0 | −36.5 | 0.5 | 3.2 | 10.3 | 11.3 |
−6.1 | −37.2 | 0.6 | 3.9 | 11.8 | ||||
SP | −6.7 | −38.3 | −6.5 | −34.4 | −0.2 | −3.9 | 15.2 | 17.3 |
Cave | Sample ID | δ18Ocalcite (‰ VPDB) | δ18Odrip water (‰ VSMOW) | Tm (°C) | Tc (°C) Tremaine et al. (2011) | Tc (°C) Daëron et al. (2019) |
---|---|---|---|---|---|---|
MOD | MOD 8 | −5.5 | −5.8 | 15.6 | 17.7 | 19.4 |
MOD 9 | −5.3 | −5.8 | 15.6 | 16.5 | 18.3 | |
MP | MPC3 | −5.4 | −7.2 | 9.2 | 9.8 | 12.1 |
MPC4 | −5.5 | −7.2 | 9.2 | 10.4 | 12.6 | |
MPC5 | −5.4 | −7.2 | 9.2 | 10.1 | 12.3 | |
MPC6 | −5.2 | −7.2 | 9.2 | 9.1 | 11.5 | |
SP | SPC2 | −4.3 | −6.6 | 11.1 | 7.5 | 9.9 |
SPC3 | −4.4 | −6.6 | 11.1 | 8.2 | 10.5 | |
SP1WC | −5.0 | −6.6 | 10.3 | 11.0 | 13.2 | |
SP1WC | −4.7 | −6.8 | 10.6 | 8.3 | 10.7 | |
SPNC | −4.8 | −6.5 | 10.3 | 10.6 | 12.8 | |
DB | DB1 | −8.1 | −10.7 | 9.9 | 6.2 | 8.7 |
DB2 | −8.9 | −10.6 | 11.1 | 10.5 | 12.7 | |
GB | GB1 | −8.7 | −10.3 | 9.7 | 10.9 | 13.1 |
GB2 | −8.4 | −10.7 | 10.9 | 7.6 | 10.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surić, M.; Czuppon, G.; Lončarić, R.; Bočić, N.; Lončar, N.; Bajo, P.; Drysdale, R.N. Stable Isotope Hydrology of Cave Groundwater and Its Relevance for Speleothem-Based Paleoenvironmental Reconstruction in Croatia. Water 2020, 12, 2386. https://doi.org/10.3390/w12092386
Surić M, Czuppon G, Lončarić R, Bočić N, Lončar N, Bajo P, Drysdale RN. Stable Isotope Hydrology of Cave Groundwater and Its Relevance for Speleothem-Based Paleoenvironmental Reconstruction in Croatia. Water. 2020; 12(9):2386. https://doi.org/10.3390/w12092386
Chicago/Turabian StyleSurić, Maša, György Czuppon, Robert Lončarić, Neven Bočić, Nina Lončar, Petra Bajo, and Russell N. Drysdale. 2020. "Stable Isotope Hydrology of Cave Groundwater and Its Relevance for Speleothem-Based Paleoenvironmental Reconstruction in Croatia" Water 12, no. 9: 2386. https://doi.org/10.3390/w12092386