Lag Time as an Indicator of the Link between Agricultural Pressure and Drinking Water Quality State
Abstract
:1. Introduction
2. Conceptual Framework
2.1. The DPLSIR Framework
2.2. Link: Flow Pathways and Lag Time
3. Materials and Methods
3.1. Case Study Sites
3.2. Materials
3.2.1. Tunø Island, Denmark
3.2.2. Aalborg-Drastrup, Denmark
3.2.3. La Voulzie, France
3.3. Lag Time Estimations
4. Results
4.1. Time-Series of Surface Soil N Surplus and Water Chemistry
4.2. Lag Time between Agricultural Pressure and Groundwater Quality State
4.3. Groundwater Age
5. Discussion
5.1. Methodological Evaluation of the Lag Time Estimation and Data Requirements
5.2. Hydrogeological Control of Lag Times
5.3. Link Indicators: Groundwater Age vs. Lag Time
5.4. Lag Time as a Criterion for the Selection of Pressure and State Indicators
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011; Volume 38. [Google Scholar]
- Knobeloch, L.; Salna, B.; Hogan, A.; Postle, J.; Anderson, H. Blue babies and nitrate-contaminated well water. Environ. Health Perspect. 2000, 108, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.; Jones, R.; Brender, J.; de Kok, T.; Weyer, P.; Nolan, B.; Villanueva, C.; van Breda, S. Drinking water nitrate and human health: An updated review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espejo-Herrera, N.; Gràcia-Lavedan, E.; Boldo, E.; Aragonés, N.; Pérez-Gómez, B.; Pollán, M.; Molina, A.J.; Fernández, T.; Martín, V.; La Vecchia, C.; et al. Colorectal cancer risk and nitrate exposure through drinking water and diet. Int. J. Cancer 2016, 139, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Schullehner, J.; Hansen, B.; Thygesen, M.; Pedersen, C.B.; Sigsgaard, T. Nitrate in drinking water and colorectal cancer risk: A nationwide population-based cohort study. Int. J. Cancer 2018, 143, 73–79. [Google Scholar] [CrossRef]
- Temkin, A.; Evans, S.; Manidis, T.; Campbell, C.; Naidenko, O.V. Exposure-based assessment and economic valuation of adverse birth outcomes and cancer risk due to nitrate in United States drinking water. Environ. Res. 2019, 176, 108442. [Google Scholar] [CrossRef]
- European Environmental Agency. Main Drinking Water Problems. Available online: https://www.eea.europa.eu/data-and-maps/figures/main-drinking-water-problems (accessed on 20 May 2020).
- Glavan, M.; Železnikar, Š.; Velthof, G.; Boekhold, S.; Langaas, S.; Pintar, M. How to enhance the role of science in European Union policy making and implementation: The case of agricultural impacts on drinking water quality. Water 2019, 11, 492. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Framework for Action for the Management of Small Drinking Water Supplies; European Union: Brussel, Belgium, 2014. [Google Scholar]
- European Commission Synthesis Report on the Quality of Drinking Water in the EU Examining the Member States’ Reports for the Period 2008–2010 under Directive 98/83/EC EN; European Union: Brussel, Belgium, 2014.
- OECD. OECD Principles on Water Governance. Available online: https://www.oecd.org/governance/oecd-principles-on-water-governance.htm (accessed on 20 May 2020).
- Young, S.; Plummer, R.; FitzGibbon, J. What can we learn from exemplary groundwater protection programs? Can. Water Resour. J. 2009, 34, 61–78. [Google Scholar] [CrossRef]
- De Loë, R.C.; Di Giantomasso, S.E.; Kreutzwiser, R.D. Local capacity for groundwater protection in ontario. Environ. Manag. 2002, 29, 217–233. [Google Scholar] [CrossRef]
- Ivey, J.L.; de Loë, R.; Kreutzwiser, R.; Ferreyra, C. An institutional perspective on local capacity for source water protection. Geoforum 2006, 37, 944–957. [Google Scholar] [CrossRef]
- Graversgaard, M.; Hedelin, B.; Smith, L.; Gertz, F.; Højberg, A.L.; Langford, J.; Martinez, G.; Mostert, E.; Ptak, E.; Peterson, H.; et al. Opportunities and barriers for water co-governance—A critical analysis of seven cases of diffuse water pollution from agriculture in Europe, Australia and North America. Sustainability 2018, 10, 1634. [Google Scholar] [CrossRef] [Green Version]
- Serrat-Capdevila, A.; Valdes, J.; Gupta, H. Decision support systems in water resources planning and management: Stakeholder participation and the sustainable path to science-based decision making. In Efficient Decision Support Systems—Practice and Challenges from Current to Future; InTechOpen: London, UK, 2011; pp. 1–16. [Google Scholar]
- Jacobs, K.; Lebel, L.; Buizer, J.; Addams, L.; Matson, P.; McCullough, E.; Garden, P.; Saliba, G.; Finan, T. Linking knowledge with action in the pursuit of sustainable water-resources management. Proc. Natl. Acad. Sci. USA 2016, 113, 4591–4596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Meter, K.J.; Basu, N.B. Time lags in watershed-scale nutrient transport: An exploration of dominant controls. Environ. Res. Lett. 2017, 12, 084017. [Google Scholar] [CrossRef]
- Meals, D.W.; Dressing, S.A.; Davenport, T.E. Lag time in water quality response to best management practices: A review. J. Environ. Qual. 2010, 39, 85–96. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). EEA Glossary. Available online: https://www.eea.europa.eu/help/glossary/eea-glossary/dpsir (accessed on 1 May 2020).
- Bagordo, F.; Migoni, D.; Grassi, T.; Serio, F.; Idolo, A.; Guido, M.; Zaccarelli, N.; Fanizzi, F.P.; De Donno, A. Using the DPSIR framework to identify factors influencing the quality of groundwater in Grecìa Salentina (Puglia, Italy). Rend. Lincei 2016, 27, 113–125. [Google Scholar] [CrossRef]
- Mattas, C.; Voudouris, K.; Panagopoulos, A. Integrated groundwater resources management using the DPSIR approach in a GIS environment context: A case study from the Gallikos river basin, North Greece. Water 2014, 6, 1043–1068. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Frostell, B. The DPSIR framework and a pressure-oriented water quality monitoring approach to ecological river restoration. Water 2012, 4, 670–682. [Google Scholar] [CrossRef] [Green Version]
- Rekolainen, S.; Kämäri, J.; Hiltunen, M.; Saloranta, T.M. A conceptual framework for identifying the need and role of models in the implementation of the water framework directive. Int. J. River Basin Manag. 2003, 1, 347–352. [Google Scholar] [CrossRef]
- Carr, E.R.; Wingard, P.M.; Yorty, S.C.; Thompson, M.C.; Jensen, N.K.; Roberson, J. Applying DPSIR to sustainable development. Int. J. Sustain. Dev. World Ecol. 2007, 14, 543–555. [Google Scholar] [CrossRef]
- Smeets, E.; Weterings, R. Environmental Indicators: Typology and Overview; Technical Report No. 25; European Environment Agency: Copenhagen, Denmark, 1999. [Google Scholar]
- Gabrielsen, P.; Bosch, P. Environmental Indicators: Typology and Use in Reporting; European Environment Agency: Copenhagen, Denmark, 2003. [Google Scholar]
- Koh, E.-H.; Lee, E.; Kaown, D.; Green, C.T.; Koh, D.-C.; Lee, K.-K.; Lee, S.H. Comparison of groundwater age models for assessing nitrate loading, transport pathways, and management options in a complex aquifer system. Hydrol. Process. 2018, 32, 923–938. [Google Scholar] [CrossRef]
- Beven, K.; Germann, P. Macropores and water flow in soils. Water Resour. Res. 1982, 18, 1311–1325. [Google Scholar] [CrossRef] [Green Version]
- Hendrickx, J.M.H.; Flury, M. Uniform and preferential flow mechanisms in the vadose zone. In Conceptual Models of Flow and Transport in the Fractured Vadose Zone; National Academies Press: Washington, DC, USA, 2001; pp. 149–187. ISBN 978-0-309-07302-8. [Google Scholar]
- Rosenbom, A.E.; Therrien, R.; Refsgaard, J.C.; Jensen, K.H.; Ernstsen, V.; Klint, K.E.S. Numerical analysis of water and solute transport in variably-saturated fractured clayey till. J. Contam. Hydrol. 2009, 104, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Rosenbom, A.E.; Ernstsen, V.; Flühler, H.; Jensen, K.H.; Refsgaard, J.C.; Wydler, H. Fluorescence imaging applied to tracer distributions in variably saturated fractured clayey till. J. Environ. Qual. 2008, 37, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.; Thorling, L.; Kim, H.; Blicher-Mathiesen, G. Long-term nitrate response in shallow groundwater to agricultural N regulations in Denmark. J. Environ. Manag. 2019, 240, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Parris, K. Agricultural nutrient balances as agri-environmental indicators: An OECD perspective. Environ. Pollut. 1998, 102, 219–225. [Google Scholar] [CrossRef]
- Organisation for Econonomic Cooperation and Development. Environmental Indicators for Agriculture. Methods and Results; OECD Publishing: Paris, France, 2001; ISBN 9789264186149. [Google Scholar]
- Blicher-Mathiesen, G.; Andersen, H.E.; Larsen, S.E. Nitrogen field balances and suction cup-measured N leaching in Danish catchments. Agric. Ecosyst. Environ. 2014, 196, 69–75. [Google Scholar] [CrossRef]
- De Notaris, C.; Rasmussen, J.; Sørensen, P.; Olesen, J.E. Nitrogen leaching: A crop rotation perspective on the effect of N surplus, field management and use of catch crops. Agric. Ecosyst. Environ. 2018, 255, 1–11. [Google Scholar] [CrossRef]
- Wick, K.; Heumesser, C.; Schmid, E. Groundwater nitrate contamination: Factors and indicators. J. Environ. Manag. 2012, 111, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.; Thorling, L.; Schullehner, J.; Termansen, M.; Dalgaard, T. Groundwater nitrate response to sustainable nitrogen management. Sci. Rep. 2017, 7, 8566. [Google Scholar] [CrossRef]
- Klages, S.; Heidecke, C.; Osterburg, B.; Bailey, J.; Calciu, I.; Casey, C.; Dalgaard, T.; Frick, H.; Glavan, M.; D’Haene, K.; et al. Nitrogen surplus—A unified indicator for water pollution in Europe? Water 2020, 12, 1197. [Google Scholar] [CrossRef] [Green Version]
- Sebol, L.A.; Robertson, W.D.; Busenberg, E.; Plummer, L.N.; Ryan, M.C.; Schiff, S.L. Evidence of CFC degradation in groundwater under pyrite-oxidizing conditions. J. Hydrol. 2007, 347, 1–12. [Google Scholar] [CrossRef]
- Hinsby, K.; Højberg, A.L.; Engesgaard, P.; Jensen, K.H.; Larsen, F.; Plummer, L.N.; Busenberg, E. Transport and degradation of chlorofluorocarbons (CFCs) in the pyritic Rabis Creek aquifer, Denmark. Water Resour. Res. 2007, 43, W10423. [Google Scholar] [CrossRef] [Green Version]
- Ellermann, T.; Bossi, R.; Nygaard, J.; Christensen, J.; Løfstrøm, P.; Monies, C.; Grundahl, L.; Geels, C.; Nielsen, I.E.; Poulsen, M.B. Atmosfærisk Deposition 2017; Videnskabelig Rapport Fra DCE—Nationalt Center for Miljø og Energi nr. 304; Aarhus Universitet: Aarhus, Denmark, 2019. [Google Scholar]
- Ministry of Environment and Food, Danish Agricultural Agency. Available online: https://lbst.dk/landbrug/kort-og-markblokke/hvordan-faar-du-adgang-til-data/ (accessed on 1 May 2020).
- Aarhus Amt. Vandforsyning På Tunø; Teknisk Rapport; Aarhus Amt: Højbjerg, Denmark, 1989; p. 87. [Google Scholar]
- Jensen, J.C.S.; Thirup, C. Nitratudvaskning i indsatsområde Tunø; Report; Aarhus Amt: Højbjerg, Denmark, 2006; p. 31. [Google Scholar]
- Geological Survey of Denmark and Greenland (GEUS). Jupiter. Available online: https://www.geus.dk/ (accessed on 1 May 2020).
- Thorling, L.; Thomsen, R. Tunø Status Report 1989–1999; Aarhus Amt: Højbjerg, Denmark, 2001. [Google Scholar]
- Windolf, J.; Blicher-Mathiesen, G.; Carstensen, J.; Kronvang, B. Changes in nitrogen loads to estuaries following implementation of governmental action plans in Denmark: A paired catchment and estuary approach for analysing regional responses. Environ. Sci. Policy 2012, 24, 24–33. [Google Scholar] [CrossRef]
- Hansen, B.; Dalgaard, T.; Thorling, L.; Sørensen, B.; Erlandsen, M. Regional analysis of groundwater nitrate concentrations and trends in Denmark in regard to agricultural influence. Biogeosciences 2012, 9, 3277–3286. [Google Scholar] [CrossRef] [Green Version]
- Thorling, L.; Ditlefsen, C.; Ernstsen, V.; Hansen, B.; Johnsen, A.R.; Troldborg, L. Grundvandsovervågning Status Og Udvikling 1989–2018; Teknisk Rapport, GEUS 2019; GEUS: Copenhagen, Denmark, 2019. [Google Scholar]
- Poisvert, C.; Curie, F.; Moatar, F. Annual agricultural N surplus in France over a 70-year period. Nutr. Cycl. Agroecosyst. 2017, 107, 63–78. [Google Scholar] [CrossRef]
- Poisvert, C.; Curie, F.; Gassama, N. Evolution des Surplus Azotés (1960–2010): Déploiement National, Étude des Temps de Transfert et de L’impact du Changement des Pratiques Agricoles; Université de Tours—UFR Sciences et Techniques: Tours, France, 2016; p. 45. [Google Scholar]
- McGonigle, D.F.; Harris, R.C.; McCamphill, C.; Kirk, S.; Dils, R.; MacDonald, J.; Bailey, S. Towards a more strategic approach to research to support catchment-based policy approaches to mitigate agricultural water pollution: A UK case-study. Environ. Sci. Policy 2012, 24, 4–14. [Google Scholar] [CrossRef]
- Cherry, K.A.; Shepherd, M.; Withers, P.J.A.; Mooney, S.J. Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: A review of methods. Sci. Total Environ. 2008, 406, 1–23. [Google Scholar] [CrossRef]
- Bouraoui, F.; Grizzetti, B. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Sci. Total Environ. 2014, 468–469, 1267–1277. [Google Scholar] [CrossRef]
- Vero, S.E.; Healy, M.G.; Henry, T.; Creamer, R.E.; Ibrahim, T.G.; Richards, K.G.; Mellander, P.E.; McDonald, N.T.; Fenton, O. A framework for determining unsaturated zone water quality time lags at catchment scale. Agric. Ecosyst. Environ. 2017, 236, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Bourgeois, C.; Jayet, P.-A. Regulation of relationships between heterogeneous farmers and an aquifer accounting for lag effects. Aust. J. Agric. Resour. Econ. 2016, 60, 39–59. [Google Scholar] [CrossRef] [Green Version]
- Vervloet, L.S.C.; Binning, P.J.; Børgesen, C.D.; Højberg, A.L. Delay in catchment nitrogen load to streams following restrictions on fertilizer application. Sci. Total Environ. 2018, 627, 1154–1166. [Google Scholar] [CrossRef]
- Odgaard, B.V.; Rømer, J.R. Danske Landbrugslandskaber Gennem 2000 år: Fra Digevoldninger Til Støtteordninger; Odgaard, B.V., Ed.; Aarhus University Press: Aarhus, Denmark, 2000; ISBN 978-87-7934-420-4. [Google Scholar]
- Carter, A. How pesticides get into water—And proposed reduction measures. Pestic. Outlook 2000, 11, 149–156. [Google Scholar] [CrossRef]
- Ghasemizadeh, R.; Hellweger, F.; Butscher, C.; Padilla, I.; Vesper, D.; Field, M.; Alshawabkeh, A. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico. Hydrogeol. J. 2012, 20, 1441–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megnien, C. Transits multiples dans l’aquifère des sources de Provins (Ile-de-France) et stratification des écoulements souterrains; Multiple transits in the aquifer supplying the Provins springs (Ile-de-France) and stratified groundwater flow (en). Hydrogéologie (Orléans) 1998, 4, 63–71. [Google Scholar]
- Gourcy, L.; Baran, N.; Vittecoq, B. Improving the knowledge of pesticide and nitrate transfer processes using age-dating tools (CFC, SF6, 3H) in a volcanic island (Martinique, French West Indies). J. Contam. Hydrol. 2009, 108, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.; Thorling, L.; Dalgaard, T.; Erlandsen, M. Trend reversal of nitrate in Danish groundwater—A reflection of agricultural practices and nitrogen surpluses since 1950. Environ. Sci. Technol. 2011, 45, 228–234. [Google Scholar] [CrossRef]
- Böhlke, J.K.; Michel, R.L. Contrasting residence times and fluxes of water and sulfate in two small forested watersheds in Virginia, USA. Sci. Total Environ. 2009, 407, 4363–4377. [Google Scholar] [CrossRef]
- Wells, M.; Gilmore, T.; Mittelstet, A.; Snow, D.; Sibray, S. Assessing decadal trends of a nitrate-contaminated shallow aquifer in Western Nebraska using groundwater isotopes, age-dating, and monitoring. Water 2018, 10, 1047. [Google Scholar] [CrossRef] [Green Version]
- Böhlke, J.K.; Denver, J.M. Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic Coastal Plain, Maryland. Water Resour. Res. 1995, 31, 2319–2339. [Google Scholar] [CrossRef]
- Manga, M. On the timescales characterizing groundwater discharge at springs. J. Hydrol. 1999, 219, 56–69. [Google Scholar] [CrossRef]
- McGuire, K.J.; McDonnell, J.J. A review and evaluation of catchment transit time modeling. J. Hydrol. 2006, 330, 543–563. [Google Scholar] [CrossRef]
- Hamilton, S.K. Biogeochemical time lags may delay responses of streams to ecological restoration. Freshw. Biol. 2012, 57, 43–57. [Google Scholar] [CrossRef]
- Jakobsen, R.; Hinsby, K.; Aamand, J.; van der Keur, P.; Kidmose, J.; Purtschert, R.; Jurgens, B.; Sültenfuss, J.; Albers, C.N. History and sources of co-occurring pesticides in an abstraction well unraveled by age distributions of depth-specific groundwater samples. Environ. Sci. Technol. 2020, 54, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Weissmann, G.S.; Zhang, Y.; LaBolle, E.M.; Fogg, G.E. Dispersion of groundwater age in an alluvial aquifer system. Water Resour. Res. 2002, 38, 1198. [Google Scholar] [CrossRef]
- Botter, G.; Bertuzzo, E.; Rinaldo, A. Catchment residence and travel time distributions: The master equation. Geophys. Res. Lett. 2011, 38, 1–6. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency Pore Water Sampling. 2013, 1–16. Available online: https://www.epa.gov/quality/pore-water-sampling (accessed on 1 May 2020).
- Yeshno, E.; Arnon, S.; Dahan, O. Real-time monitoring of nitrate in soils as a key for optimization of agricultural productivity and prevention of groundwater pollution. Hydrol. Earth Syst. Sci. 2019, 23, 3997–4010. [Google Scholar] [CrossRef] [Green Version]
- Velthof, G.L.; Hoving, I.E.; Dolfing, J.; Smit, A.; Kuikman, P.J.; Oenema, O. Method and timing of grassland renovation affects herbage yield, nitrate leaching, and nitrous oxide emission in intensively managed grasslands. Nutr. Cycl. Agroecosyst. 2010, 86, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Kaur, G.; Williard, K.; Schoonover, J.; Kang, J. Monitoring of water and solute transport in the vadose zone: A review. Vadose Zone J. 2018, 17, 160058. [Google Scholar] [CrossRef]
- Weihermüller, L.; Siemens, J.; Deurer, M.; Knoblauch, S.; Rupp, H.; Göttlein, A.; Pütz, T. In situ soil water extraction: A review. J. Environ. Qual. 2007, 36, 1735–1748. [Google Scholar] [CrossRef]
Tunø Island, Denmark | Aalborg-Drastrup, Denmark | La Voulzie Catchment, France | |
---|---|---|---|
Study area (km2) | 0.25 | 9.92 | 115 |
Climate | Coastal temperate | Coastal temperate | Temperate |
Geology | Quaternary glacial sediment | Quaternary glacial sediment and fractured limestone | Massive limestone |
Source of drinking water | Groundwater | Groundwater | Groundwater (springs) |
Drinking water production (m3 year−1) | 10,000 | 1.5 million | 20 million |
Number of consumers | 100 | 26,000 | 400,000 |
Water protection plans and activities | Permanent grass over the recharging area | Afforestation in some places and protection zone limiting nitrate leaching to 25 mg/L and no pesticide use | Various agricultural measures |
Contaminant of concern | Nitrate | Nitrate and pesticides | Nitrate and pesticides |
Observation Period of Water Chemistry Data (Total Number of Observations) | Average of Nitrate in mg/L (Standard Deviation) | Average of Dissolved Oxygen in mg/L (Standard Deviation) | Lag Time in Years (Correlation Coefficient) | Groundwater Age (Year) | |
---|---|---|---|---|---|
Tunø Island, Denmark | |||||
Soil pore water (3 points) | 1989–2007 (130–142) | 35 (69) | - | 0–2 (0.75–0.85) ** | |
100. 118 (4.92 m) | 1994–2007 (20) | 16 (14) | 7.3 (0.1) | 5 (0.81) ** | |
100. 118 (6.72 m) | 1993–2010 (30) | 44 (54) | 7.8 (1.9) | 5 (0.85) ** | |
100. 118 (6.92 m) | 1994–2007 (26) | 49 (59) | 6.8 (3.9) | 5 (0.82) ** | |
100. 116 (8.07 m) | 1993–2010 (28) | 9.8 (13) | 5.5 (0.2) | 3 (0.76) ** | |
100. 110 (9.1 m) | 1989–2010 (44) | 87 (30) | 6.7 (1.2) | 4 (0.76) ** | 15 |
100. 112 (9.2 m) † | 1989–2010 (40) | 176 (38) | 3.7 (1.1) | 9 (0.86) ** | 15 |
100. 37 (11 m) | 1989–2017 (50) | 77 (43) | 3.7 (1.8) | 5 (0.87) ** | |
100. 117 (11.7 m) | 1993–2010 (30) | 100 (50) | 4.6 (2.3) | 6 (0.78) ** | |
100. 38 (12.5 m) | 1978–2010 (53) | 118 (34) | 5.3 (1.1) | 8 (0.78) ** | 21 |
100. 59 (14.5 m) | 1985–2017 (76) | 44 (19) | 2.3 (1.9) | 10 (0.88) ** | |
100. 111 (15.8 m) † | 1989–2010 (40) | 100 (26) | 0.2 (0.2) | 16 (0.77) ** | 22 |
100. 109 (16.25 m) | 1989–2010 (40) | 24 (13) | 0.2 (0.2) | 20 (0.53) * | 26 |
Aaborg-Drastrup, Denmark | |||||
34. 1737 (1–9 m) | 1989–2018 (45) | 43 (19) | 1.9 (1.7) | 3 (0.78) ** | 21 |
34. 1744 (9–17 m) | 1989–2019 (46) | 119 (15) | 8.2 (0.9) | 16 (0.78) ** | 23 |
34. 1745 (9–17 m) | 1989–2019 (44) | 95 (18) | 8.7 (0.7) | 23 (0.48) * | 20 |
34. 1647 (10–16 m) | 1988–2018 (45) | 69 (18) | 0.4 (0.3) | 12 (0.90) ** | 22 |
34. 1739 (11.5-–19.5 m) | 1989–2019 (45) | 88 (18) | 6.8 (0.8) | 9 (0.73) ** | 16 |
34. 1738 (12.5–20.5 m) | 1989–2019 (42) | 158 (27) | 6.8 (1.6) | 12 (0.94) ** | 16 |
34. 1055 (15–40 m) | 1986–2019 (18) | 38 (4.5) | 4.5 (1.1) | 26 (0.84) ** | |
34. 1742 (16–24 m) | 1989–2019 (45) | 53 (8.4) | 5.7 (0.6) | 10 (0.83) ** | 30 |
34. 1736 (18–21 m) | 1989–2018 (44) | 50 (7.3) | 4.7 (1.6) | 28 (0.76) ** | 19 |
34. 1706 (21–33 m) | 1988–2017 (46) | 8.1 (4.8) | 6.2 (2.2) | 4 (0.78) ** | 8 |
34. 1743 (21–24 m) | 1989–2019 (44) | 106 (14) | 8.6 (0.9) | 25 (0.91) ** | 26 |
34. 1736 (26–29 m) | 1989–2018 (44) | 34 (5.3) | 3.4 (0.4) | 29 (0.92) ** | 30 |
34. 1743 (36–39 m) | 1989-–2018 (43) | 69 (13) | 7.5 (0.5) | 29 (0.96) ** | 40 |
34. 1646 (38–50 m) | 1988–2019 (45) | 57 (12) | 5.2 (0.3) | 29 (0.88) ** | 28 |
34. 1663 (47–62 m) | 1987–2019 (17) | 26 (12) | 3.2 (2.5) | 28 (0.86) ** | |
34. 1664 (49–64 m) | 1987–2018 (20) | 16 (7.8) | 2.4 (2.5) | 35 (0.98) ** | |
34. 1736 (51–54 m) | 1989–2018 (43) | 9.3 (3.7) | 0.7 (0.5) | 29 (0.82) ** | 48 |
34. 1662 (56–74 m) | 1987–2018 (15) | 11 (6.2) | 0.8 (0.3) | 29 (0.86) ** | |
34. 1743 (61–64 m) | 1989–2019 (42) | 18 (2.6) | 3.4 (0.3) | 42 (0.91) ** | 46 |
34. 2364 (61–73 m) | 2003–2019 (12) | 5.5 (1.9) | 1.2 (1.3) | 38 (0.95) ** | |
34. 2365 (66–78 m) | 2002–2019 (14) | 3.0 (1.2) | 1.1 (2.1) | 38 (0.76) * | |
La Voulzie Catchment, France | |||||
Top spring | 1928–2014 (456) | 66 | - | 8 (0.78) ** | − |
Main spring | 1927–2014 (469) | 47 | 9.2 | 15 (0.70) ** | − |
Bottom spring | 1927–2014 (463) | 43 | 9.9 | 24 (0.83) ** | − |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Surdyk, N.; Møller, I.; Graversgaard, M.; Blicher-Mathiesen, G.; Henriot, A.; Dalgaard, T.; Hansen, B. Lag Time as an Indicator of the Link between Agricultural Pressure and Drinking Water Quality State. Water 2020, 12, 2385. https://doi.org/10.3390/w12092385
Kim H, Surdyk N, Møller I, Graversgaard M, Blicher-Mathiesen G, Henriot A, Dalgaard T, Hansen B. Lag Time as an Indicator of the Link between Agricultural Pressure and Drinking Water Quality State. Water. 2020; 12(9):2385. https://doi.org/10.3390/w12092385
Chicago/Turabian StyleKim, Hyojin, Nicolas Surdyk, Ingelise Møller, Morten Graversgaard, Gitte Blicher-Mathiesen, Abel Henriot, Tommy Dalgaard, and Birgitte Hansen. 2020. "Lag Time as an Indicator of the Link between Agricultural Pressure and Drinking Water Quality State" Water 12, no. 9: 2385. https://doi.org/10.3390/w12092385
APA StyleKim, H., Surdyk, N., Møller, I., Graversgaard, M., Blicher-Mathiesen, G., Henriot, A., Dalgaard, T., & Hansen, B. (2020). Lag Time as an Indicator of the Link between Agricultural Pressure and Drinking Water Quality State. Water, 12(9), 2385. https://doi.org/10.3390/w12092385