Water-Holding Characteristics of Litter in Meadow Steppes with Different Years of Fencing in Inner Mongolia, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Area
2.2. Plant Investigation
2.3. Water-Holding Characteristics of Litter
2.4. Data Analysis
3. Results
3.1. Plant Investigation
3.2. Litter Characteristics
3.3. Water-Holding Characteristics of Litter
3.4. Model of Litter’s Water-Holding Capacity
4. Discussions
4.1. Plant Investigation
4.2. Characteristics of Litter Accumulation
4.3. Water-Holding Characteristics of Litter
4.4. Water-Holding Model of Litter
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sun, H.L. Ecosystem of China; Science Press: Beijing, China, 2005; pp. 150–201. [Google Scholar]
- Jiang, G.; Han, X.; Wu, J. Restoration and management of the Inner Mongolia grassland require a sustainable strategy. AMBIO J. Hum. Environ. 2006, 35, 269–270. [Google Scholar] [CrossRef]
- Jia, X.N.; Cheng, J.M.; Wan, H.E. Effects of Enclosure on the Community Characteristics of Stipa bungeana Grassland in Yunwu Mountain. Acta Agrestia Sin. 2008, 3, 272–277. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDXU200803013.htm (accessed on 19 August 2020).
- Lv, S.H.; Feng, C.S.; Gao, J.X.; Lu, X.S. Study on Enclosing Effects and Biodiversity Variation of Desertification Grassland in Hulunbeir Steppe. Acta Agrestia Sin. 2008, 5, 442–447. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDXU200805004.htm (accessed on 19 August 2020).
- Jing, Z.; Cheng, J.; Chen, A. Assessment of vegetative ecological characteristics and the succession process during three decades of grazing exclusion in a continental steppe grassland. Ecol. Eng. 2013, 57, 162–169. [Google Scholar] [CrossRef]
- Cheng, J.; Gao, Y.; Jing, Z.; Jin, J.; Jimin, J.Z.C. Restoration and Utilization Mechanism of Degraded Grassland in the Semi-arid Region of Loess Plateau. Sci. Sin. Vitae 2014, 44, 267–279. [Google Scholar] [CrossRef]
- Liu, J.; Wu, J.; Su, H.; Gao, Z.; Wu, Z. Effects of grazing exclusion in Xilin Gol grassland differ between regions. Ecol. Eng. 2017, 99, 271–281. [Google Scholar] [CrossRef]
- Wu, G.-L.; Du, G.; Liu, Z.-H.; Thirgood, S. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant Soil 2008, 319, 115–126. [Google Scholar] [CrossRef]
- Okin, G.S. The contribution of brown vegetation to vegetation dynamics. Ecology 2010, 91, 743–755. [Google Scholar] [CrossRef]
- Geng, Y.B.; Shi, J.J. Influencing Factors of Grassland Litter Decomposition and Nutrient Release and Accumulation. Prog. Geogr. 2012, 5, 655–663. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKJ201205018.htm (accessed on 19 August 2020).
- Liu, Q.; Peng, S.L. Plant Litter Ecology; Science Press: Beijing, China, 2010; pp. 23–54. [Google Scholar]
- Amatangelo, K.L.; Dukes, J.S.; Field, C.B. Responses of a California annual grassland to litter manipulation. J. Veg. Sci. 2008, 19, 605–612. [Google Scholar] [CrossRef]
- Patrick, L.B.; Fraser, L.H.; Kershner, M.W. Large-scale manipulation of plant litter and fertilizer in a managed successional temperate grassland. Plant Ecology 2008, 197, 183–195. [Google Scholar] [CrossRef]
- Deutsch, E.; Bork, E.; Willms, W.D. Soil moisture and plant growth responses to litter and defoliation impacts in Parkland grasslands. Agric. Ecosyst. Environ. 2010, 135, 1–9. [Google Scholar] [CrossRef]
- Loydi, A.; Eckstein, R.L.; Otte, A.; Donath, T.W. Effects of litter on seedling establishment in natural and semi-natural grasslands: A meta-analysis. J. Ecol. 2012, 101, 454–464. [Google Scholar] [CrossRef]
- Facelli, J.M.; Pickett, S.T.A. Plant Litter: Light Interception and Effects on an Old-Field Plant Community. Ecology 1991, 72, 1024–1031. [Google Scholar] [CrossRef]
- Gerrits, A.M.J.; Pfister, L.; Savenije, H.H. Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol. Process. 2010, 24, 3011–3025. [Google Scholar] [CrossRef]
- Jensen, K.; Gutekunst, K. Effects of litter on establishment of grassland plant species: The role of seed size and successional status. Basic Appl. Ecol. 2003, 4, 579–587. [Google Scholar] [CrossRef]
- Naeth, M.A.; Bailey, A.W.; Chanasyk, D.S.; Pluth, D.J. Water Holding Capacity of Litter and Soil Organic Matter in Mixed Prairie and Fescue Grassland Ecosystems of Alberta. J. Range Manag. 1991, 44, 13–17. [Google Scholar] [CrossRef]
- Knapp, A.K.; Seastedt, T.R. Detritus Accumulation Limits Productivity of Tallgrass Prairie. Bioscience 1986, 36, 662–668. [Google Scholar] [CrossRef]
- Corbett, E.S.; Crouse, R.P. Rainfall Interception by Annual Grass and Chaparral: Losses Compared; Forest Service Research Paper PSW-48; US Department of Agriculture: Berkeley, CA, USA, 1968; pp. 1–11. [Google Scholar]
- Couturier, D.E.; Ripley, E.A. Rainfall Interception in Mixed Grass Prairie. Can. J. Plant Sci. 1973, 53, 659–663. [Google Scholar] [CrossRef]
- Hou, D.; He, W.-M.; Liu, C.; Qiao, X.; Guo, K. Litter accumulation alters the abiotic environment and drives community successional changes in two fenced grasslands in Inner Mongolia. Ecol. Evol. 2019, 9, 9214–9224. [Google Scholar] [CrossRef]
- Carson, W.P.; Peterson, C.J. The role of litter in an old-field community: Impact of litter quantity in different seasons on plant species richness and abundance. Oecologia 1990, 85, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Lamb, E.G. Direct and Indirect Control of Grassland Community Structure by Litter, Resources, and Biomass. Ecology 2008, 89, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Zagyvai-Kiss, K.A.; Kalicz, P.; Szilagyi, J.; Gribovszki, Z. On the specific water holding capacity of litter for three forest ecosystems in the eastern foothills of the Alps. Agric. Meteorol. 2019, 278, 1–8. [Google Scholar] [CrossRef]
- Flory, E.L. Comparison of the Environment and Some Physiological Responses of Prairie Vegetation and Cultivated Maize. Ecology 1936, 17, 67–103. [Google Scholar] [CrossRef]
- Weaver, J.E.; Rowland, N.W. Effects of Excessive Natural Mulch on Development, Yield, and Structure of Native Grassland. Int. J. Plant Sci. 1952, 114, 1–19. [Google Scholar] [CrossRef]
- Burgy, R.H.; Pomeroy, C.R. Interception losses in grassy vegetation. Trans. Am. Geophys. Union 1958, 39, 1095–1100. [Google Scholar] [CrossRef]
- Li, X.B.; Chen, L.; Tian, Z.; Wang, X.Y.; Liu, B.R.; Liu, R.; Xie, Y.Z. Water Holding Capacity and Capita Storage of Plant Community Litter in Representative Desert Steppe. J. Soil Water Conserv. 2011, 6, 144–147. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-TRQS201106032.htm (accessed on 19 August 2020).
- Shi, S.; Guo, J.X. Ecohydrological functions of litter in three main plan tcommunities on Songnen grassland. Chin. J. Appl. Ecol. 2007, 8, 1722–1726. Available online: http://www.cjae.net/CN/Y2007/V18/I08/1722 (accessed on 19 August 2020).
- Zhang, Y.; Li, P.; Liu, X.J.; Ren, Z.P.; Ma, T.T.; Zhao, B.H.; Xu, G.C. Water Holding Capacity of Litter with Different Vegetation Types in the Loess Hilly Region. Res. Soil Water Consev. 2016, 5, 100–105. Available online: http://www.cnki.com.cn/Article/CJFDTotal-STBY201605017.htm (accessed on 19 August 2020).
- Kou, M.; Jiao, J.Y.; Yin, Q.L.; Du, H.D.; Wang, D.L. Water holding capacity and potential nutrient return capacity of main herb species litter in the Hill-Gully Loess Plateau. Acta Ecol. Sin. 2015, 35, 1337–1349. [Google Scholar] [CrossRef][Green Version]
- Sato, Y.; Kumagai, T.; Kume, A.; Otsuki, K.; Ogawa, S. Experimental analysis of moisture dynamics of litter layers?the effects of rainfall conditions and leaf shapes. Hydrol. Process. 2004, 18, 3007–3018. [Google Scholar] [CrossRef]
- Biral, V.C.N.; Will, R.E.; Zou, C.B. Establishment of Quercus marilandica Muenchh. and Juniperus virginiana L. in the Tallgrass Prairie of Oklahoma, USA Increases Litter Inputs and Soil Organic Carbon. Forests 2019, 10, 329. [Google Scholar] [CrossRef]
- Santonja, M.; Milcu, A.; Fromin, N.; Rancon, A.; Shihan, A.; Fernandez, C.; Baldy, V.; Hättenschwiler, S. Temporal Shifts in Plant Diversity Effects on Carbon and Nitrogen Dynamics During Litter Decomposition in a Mediterranean Shrubland Exposed to Reduced Precipitation. Ecosystems 2018, 22, 939–954. [Google Scholar] [CrossRef]
- Cheng, J.; Jing, G.; Wei, L.; Jing, Z. Long-term grazing exclusion effects on vegetation characteristics, soil properties and bacterial communities in the semi-arid grasslands of China. Ecol. Eng. 2016, 97, 170–178. [Google Scholar] [CrossRef]
- Guanghua, J.; Wei, L.; Kailiang, Y.; Zak, R.; Jimin, C. Effects of fertilization, burning, and grazing on plant community in the long-term fenced grasslands. Plant Soil Environ. 2017, 63, 171–176. [Google Scholar] [CrossRef]
- Mayer, R.; Kaufmann, R.; Vorhauser, K.; Erschbamer, B. Effects of grazing exclusion on species composition in high-altitude grasslands of the Central Alps. Basic Appl. Ecol. 2009, 10, 447–455. [Google Scholar] [CrossRef]
- Shi, X.-M.; Li, X.G.; Li, C.T.; Zhao, Y.; Shang, Z.H.; Ma, Q. Grazing exclusion decreases soil organic C storage at an alpine grassland of the Qinghai–Tibetan Plateau. Ecol. Eng. 2013, 57, 183–187. [Google Scholar] [CrossRef]
- Borer, E.T.; Seabloom, E.W.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Lind, E.; Adler, P.B.; Alberti, J.; Anderson, T.M.; Bakker, J.D.; et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 2014, 508, 517–520. [Google Scholar] [CrossRef]
- Van Staalduinen, M.; During, H.; Werger, M.J. Impact of grazing regime on a Mongolian forest steppe. Appl. Veg. Sci. 2007, 10, 299–306. [Google Scholar] [CrossRef]
- Van Staalduinen, M.A.; Anten, N.P.R. Differences in the compensatory growth of two co-occurring grass species in relation to water availability. Oecologia 2005, 146, 190–199. [Google Scholar] [CrossRef]
- Sasaki, T.; Okayasu, T.; Takeuchi, K.; Jamsran, U.; Jadambaa, S. Patterns of floristic composition under different grazing intensities in Bulgan, South Gobi, Mongolia. Grassl. Sci. 2005, 51, 235–242. [Google Scholar] [CrossRef]
- Díaz, S.; Lavorel, S.; McIntyre, S.; Falczuk, V.; Casanoves, F.; Milchunas, D.G.; Skarpe, C.; Rusch, G.M.; Sternberg, M.; Noy-Meir, I.; et al. Plant trait responses to grazing? A global synthesis. Glob. Chang. Boil. 2007, 13, 313–341. [Google Scholar] [CrossRef]
- Xiong, S.; Nilsson, C. The effects of plant litter on vegetation: A meta-analysis. J. Ecol. 1999, 87, 984–994. [Google Scholar] [CrossRef]
- Yan, Y.; Lu, X. Is grazing exclusion effective in restoring vegetation in degraded alpine grasslands in Tibet, China? PeerJ 2015, 3, e1020. [Google Scholar] [CrossRef] [PubMed]
- Takatsuki, S.; Sato, M.; Morinaga, Y. Effects of grazing on grassland communities of the forest-steppe of northern Mongolia: A comparison of grazed versus ungrazed places. Grassl. Sci. 2018, 64, 167–174. [Google Scholar] [CrossRef]
- Kakinuma, K.; Ozaki, T.; Takatsuki, S.; Chuluun, J. How Pastoralists in Mongolia Perceive Vegetation Changes Caused by Grazing. Nomad Peoples 2008, 12, 67–73. [Google Scholar] [CrossRef]
- Ren, H.; Taube, F.; Han, G.; Lan, Z.; Wan, H.; Schönbach, P.; Gierus, M. Grazing effects on herbage nutritive values depend on precipitation and growing season in Inner Mongolian grassland. J. Plant Ecol. 2016, 9, 712–723. [Google Scholar] [CrossRef]
- Wen, L.; Jinlan, W.; Xiaojiao, Z.; Shangli, S.; Wenxia, C. Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau. Ecol. Eng. 2018, 111, 134–142. [Google Scholar] [CrossRef]
- Yao, X.; Wu, J.; Gong, X.; Lang, X.; Wang, C.; Song, S.; Ahmad, A.A. Effects of long term fencing on biomass, coverage, density, biodiversity and nutritional values of vegetation community in an alpine meadow of the Qinghai-Tibet Plateau. Ecol. Eng. 2019, 130, 80–93. [Google Scholar] [CrossRef]
- Thurow, T.L.; Blackburn, W.H.; Warren, S.D.; Taylor, C.A. Rainfall Interception by Midgrass, Shortgrass, and Live Oak Mottes. J. Range Manag. 1987, 40, 455–460. [Google Scholar] [CrossRef]
Name | Time of Fencing | Shannon | Simpson | P_Evenness | S_Evenness |
---|---|---|---|---|---|
SAN | Light grazing | 1.681 ± 0.293 a | 4.314 ± 1.335 a | 0.781 ± 0.086 a | 0.497 ± 0.147 a |
CHA | Three years | 1.074 ± 0.376 c | 2.627 ± 1.027 c | 0.707 ± 0.202 b | 0.574 ± 0.201 a |
GU | Seven years | 1.324 ± 0.403 b | 3.316 ± 1.251 b | 0.774 ± 0.129 a | 0.578 ± 0.185 a |
TE | Ten years | 1.368 ± 0.361 b | 3.187 ± 1.409 bc | 0.64 ± 0.136 c | 0.377 ± 0.173 b |
p < 0.05 Duncan |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Su, D. Water-Holding Characteristics of Litter in Meadow Steppes with Different Years of Fencing in Inner Mongolia, China. Water 2020, 12, 2374. https://doi.org/10.3390/w12092374
Xie J, Su D. Water-Holding Characteristics of Litter in Meadow Steppes with Different Years of Fencing in Inner Mongolia, China. Water. 2020; 12(9):2374. https://doi.org/10.3390/w12092374
Chicago/Turabian StyleXie, Jingjie, and Derong Su. 2020. "Water-Holding Characteristics of Litter in Meadow Steppes with Different Years of Fencing in Inner Mongolia, China" Water 12, no. 9: 2374. https://doi.org/10.3390/w12092374
APA StyleXie, J., & Su, D. (2020). Water-Holding Characteristics of Litter in Meadow Steppes with Different Years of Fencing in Inner Mongolia, China. Water, 12(9), 2374. https://doi.org/10.3390/w12092374