Combining Artificial Neural Networks with Causal Inference for Total Phosphorus Concentration Estimation and Sensitive Spectral Bands Exploration Using MODIS
Abstract
:1. Introduction
2. Materials
2.1. Study Areas
2.2. In-Situ Data
2.3. Satellite Data
3. Methods
3.1. MODIS Imagery Preprocessing
3.2. TP Concentration Estimation Based on an ANN
3.3. Causal Inference
4. Results and Discussions
4.1. Results of TP Estimation
4.2. Results of Causal Inference
4.3. Spatial Distributions of TP
4.4. Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
TP | Total phosphorus |
ANN | Artificial neural network |
Chl-a | Chlorophyll-a |
CDOM | colored dissolved organic matter |
TSM | Total suspended matter |
MODIS | Moderate resolution imaging spectroradiometer |
ITE | Individual treatment effect |
LAADS | Level-1 and Atmosphere Archive and Distribution System |
ELU | Exponential linear units |
MSE | Mean square error |
RMSE | Root mean square error |
MAE | Mean absolute error |
References
- Cao, Z.; Duan, H.; Shen, M.; Ma, R.; Xue, K.; Liu, D.; Xiao, Q. Using VIIRS/NPP and MODIS/Aqua data to provide a continuous record of suspended particulate matter in a highly turbid inland lake. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 256–265. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Huang, X.; Hug, A. Spatial Assessment of Water Quality with Urbanization in 2007–2015, Shanghai, China. Remote Sens. 2018, 10, 1024. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Choi, M. Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea. Environ. Monit. Assess. 2015, 187, 384. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, J.; Yin, H.; Liu, C.; Xia, T.; Wang, J.; Huang, Q. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques. J. Environ. Manag. 2015, 151, 33–43. [Google Scholar] [CrossRef]
- Hajigholizadeh, M.; Melese, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Jakubowski, A.R.; Chidister, I.; Townsend, P.A. A MODIS approach to predicting stream water quality in Wisconsin. Remote Sens. Environ. 2013, 128, 74–86. [Google Scholar] [CrossRef]
- Xiong, J.; Lin, C.; Ma, R.; Cao, Z. Remote Sensing Estimation of Lake Total Phosphorus Concentration Based on MODIS: A Case Study of Lake Hongze. Remote Sens. 2019, 11, 2068. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Wang, Q.; Li, Y.; Lyu, H.; Zhu, L.; Zheng, Z.; Wen, S.; Liu, G.; Guo, Y. Estimation of total phosphorus concentration using a water classification method in inland water. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 9–42. [Google Scholar] [CrossRef]
- Pu, F.; Ding, C.; Chao, Z.; Yu, Y.; Xu, X. Water-Quality Classification of Inland Lakes Using Landsat8 Images by Convolutional Neural Networks. Remote Sens. 2019, 11, 1674. [Google Scholar] [CrossRef] [Green Version]
- Assegid, Y.; Naja, G.; Rivero, R.G.; Melesse, A.M. Water Quality Monitoring Using Remote Sensing and an Artificial Neural Network. Water Air Soil Pollut. 2012, 223, 5875–5887. [Google Scholar]
- Jing, Y.; Zhang, Y.; Hu, M.; Chu, Q.; Ma, R. MODIS-Satellite-Based Analysis of Long-Term Temporal-Spatial Dynamics and Drivers of Algal Blooms in a Plateau Lake Dianchi, China. Remote Sens. 2019, 11, 2582. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, H.; Cui, G.; Cao, Y. Water quality attribution and simulation of non-point source pollution load flux in the Hulan River basin. Sci. Rep. 2020, 10, 3021. [Google Scholar] [CrossRef] [Green Version]
- Molkov, A.A.; Fedorov, S.; Pelevin, V.V.; Korchemkine, E. Regional Models for High-Resolution Retrieval of Chlorophyll a and TSM Concentrations in the Gorky Reservoir by Sentinel-2 Imagery. Remote Sens. 2019, 11, 1215. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Gao, J.; Sun, D.; Tian, M. Monitoring Water Transparency in Shallow and Eutrophic Lake Waters Based on GOCI Observations. Remote Sens. 2020, 12, 163. [Google Scholar] [CrossRef] [Green Version]
- Harvey, E.T.; Kratzer, S.; Philipson, P. Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters. Remote Sens. Environ. 2015, 158, 417–430. [Google Scholar] [CrossRef]
- Pyo, J.; Ligaray, M.; Kwon, Y.S.; Ahn, M.; Kim, K.; Lee, H.; Kang, Y.; Cho, S.B.; Park, Y.; Cho, K.H. High-Spatial Resolution Monitoring of Phycocyanin and Chlorophyll-a Using Airborne Hyperspectral Imagery. Remote Sens. 2018, 10, 1180. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.M.; Ishizaka, J.; Goes, J.I.; Gomes, H.D.R.; Maure, E.D.R.; Hayashi, M.; Katano, T.; Fujii, N.; Saitoh, K.; Mine, T.; et al. Improved MODIS-Aqua Chlorophyll-a Retrievals in the Turbid Semi-Enclosed Ariake Bay, Japan. Remote Sens. 2018, 10, 1335. [Google Scholar] [CrossRef] [Green Version]
- Arabi, B.; Salama, M.S.; Pitarch, J.; Verhoef, W. Integration of in situ and multi-sensor satellite observations for long-term water quality monitoring in coastal areas. Remote Sens. Environ. 2020, 239, 111632. [Google Scholar] [CrossRef]
- Barnes, B.B.; Hu, C.; Holekamp, K.L.; Blonski, S.; Spiering, B.A.; Palandro, D.; Lapointe, B. Use of Landsat data to track historical water quality changes in Florida Keys marine environments. Remote Sens. Environ. 2014, 140, 485–496. [Google Scholar] [CrossRef]
- Hu, L.; Hu, C.; He, M. Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea. Remote Sens. Environ. 2017, 197, 217–227. [Google Scholar] [CrossRef]
- DeLuca, N.M.; Zaitchik, B.F.; Curriero, F.C. Can Multispectral Information Improve Remotely Sensed Estimates of Total Suspended Solids? A Statistical Study in Chesapeake Bay. Remote Sens. 2018, 10, 1393. [Google Scholar] [CrossRef] [Green Version]
- Politi, E.; Cutler, M.E.J.; Rowan, J.S. Evaluating the spatial transferability and temporal repeatability of remote-sensing-based lake water quality retrieval algorithms at the European scale: A meta-analysis approach. Int. J. Remote Sens. 2015, 36, 3005. [Google Scholar] [CrossRef] [Green Version]
- Din, E.S.E.; Zhang, Y. Estimation of both optical and non-optical surface water quality parameters using Landsat 8 OLI imagery and statistical techniques. J. Appl. Remote Sens. 2017, 11, 046008. [Google Scholar]
- Markogianni, V.; Kalivas, D.P.; Petropoulos, G.; Dimitriou, E. An Appraisal of the Potential of Landsat 8 in Estimating Chlorophyll-a, Ammonium Concentrations and Other Water Quality Indicators. Remote Sens. 2018, 10, 1018. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Yi, H.; Liu, X.; Wang, Y.; Liu, X.; Zhang, H. Remote-sensing estimation of dissolved inorganic nitrogen concentration in the Bohai Sea using band combinations derived from MODIS data. Int. J. Remote Sens. 2016, 37, 327–340. [Google Scholar] [CrossRef]
- Clay, S.; Pena, A.; Detracey, B.; Devred, E. Evaluation of Satellite-Based Algorithms to Retrieve Chlorophyll-a Concentration in the Canadian Atlantic and Pacific Oceans. Remote Sens. 2019, 11, 2609. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Lee, Z.; Zhang, Y.; Lin, J.; Shi, K.; Zhou, Y.; Qin, B.; Sun, Z. Remote Sensing of Secchi Depth in Highly Turbid Lake Waters and Its Application with MERIS Data. Remote Sens. 2019, 11, 2226. [Google Scholar] [CrossRef] [Green Version]
- Ogashawara, I.; Li, L. Removal of Chlorophyll-a Spectral Interference for Improved Phycocyanin Estimation from Remote Sensing Reflectance. Remote Sens. 2019, 11, 1764. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Li, J.; Shen, Q.; Zhang, B.; Tian, L.; Ye, H.; Wang, S.; Lu, Z. A soft-classification-based chlorophyll-a estimation method using MERIS data in the highly turbid and eutrophic Taihu Lake. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 138–149. [Google Scholar] [CrossRef]
- Isenstein, E.M.; Park, M.H. Assessment of nutrient distributions in Lake Champlain using satellite remote sensing. J. Environ. Sci. 2014, 26, 1831–1836. [Google Scholar] [CrossRef]
- Song, K.; Li, L.; Tedesco, L.; Li, S.; Shi, K.; Hall, R.E. Remote estimation of nutrients for a drinking water source through adaptive modeling. Water Resour. Manag. 2014, 28, 2563–2581. [Google Scholar] [CrossRef]
- Deutsch, E.S.; Alameddine, I.; EI-Fadel, M. Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: How transferable are the water quality algorithms? Environ. Monit. Assess. 2018, 190, 141. [Google Scholar] [CrossRef]
- Blix, K.; Li, J.; Massicotte, P.; Matsuoko, A. Developing a New Machine-Learning Algorithm for Estimating Chlorophyll-a Concentration in Optically Complex Waters: A Case Study for High Northern Latitude Waters by Using Sentinel 3 OLCI. Remote Sens. 2019, 11, 2076. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.; Liu, P.; Liu, Y.; Yang, S.; Feng, S. A 30-Year Assessment of Phytoplankton Blooms in Erhai Lake Using Landsat Imagery: 1987 to 2016. Remote Sens. 2017, 9, 1265. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wu, L.; Ren, H.; Deng, L.; Zhang, P. Retrieval of Water Quality Parameters from Hyperspectral Images Using Hybrid Bayesian Probabilistic Neural Network. Remote Sens. 2020, 12, 1567. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Yuan, D.; Song, X. Empirical Estimation of Total Nitrogen and Total Phosphorus Concentration of Urban Water Bodies in China Using High Resolution IKONOS Multispectral Imagery. Water 2015, 7, 6551–6573. [Google Scholar] [CrossRef] [Green Version]
- Nazeer, M.; Bilal, M.; Alsahli, M.M.M.; Shahzad, M.I.; Waqas, A. Evaluation of Empirical and Machine Learning Algorithms for Estimation of Coastal Water Quality Parameters. Int. J. Geo-Inf. 2017, 6, 360. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Cheng, L.; Li, J.; Hahn, P.R.; Liu, H. A survey of learning causality with data: Problems and methods. arXiv 2018, arXiv:1809.09337. [Google Scholar]
- Holland, P.W. Statistics and causal inference. J. Am. Stat. Assoc. 1986, 81, 945–960. [Google Scholar] [CrossRef]
- Pearl, J. Causal inference in statistics: An overview. Stat. Surv. 2009, 3, 96–146. [Google Scholar] [CrossRef]
- Kuang, K.; Cui, P.; Li, B.; Jiang, M.; Yang, S.; Wang, F. Treatment effect estimation with data-driven variable decomposition. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1532–1543. [Google Scholar]
- Moutier, W.; Thomalla, S.; Bernard, S. Evaluation of Chlorophyll-a and POC MODIS Aqua Products in the Southern Ocean. Remote Sens. 2019, 11, 1793. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Sun, B.; Zhang, H.; Liu, J.; Chen, J.; Wang, J.; Jiang, X.; Yang, Y. MODIS ocean color product downscaling via spatio-temporal fusion and regression: The case of chlorophyll-a in coastal waters. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 340–361. [Google Scholar] [CrossRef]
- Page, B.; Kumar, A.; Mishra, D. A novel cross-satellite based assessment of the spatio-temporal development of a cyanobacterial harmful algal bloom. Int. J. Appl. Earth Obs. Geoinf. 2017, 66, 69–81. [Google Scholar] [CrossRef]
- Son, S.; Wang, M. VIIRS-Derived Water Turbidity in the Great Lakes. Remote Sens. 2019, 11, 1448. [Google Scholar] [CrossRef] [Green Version]
- Bonansea, M.; Rodriguez, C.; Pinotti, L.; Ferrero, S. Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sens. Environ. 2015, 158, 28–41. [Google Scholar] [CrossRef]
- Clevert, D.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv 2016, arXiv:1511.07289. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V.S. River Flow Forecasting Through Conceptual Models: Part 1.—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Hill, J.L. Bayesian nonparametric modeling for causal inference. J. Comput. Graph. Stat. 2012, 10, 217–240. [Google Scholar] [CrossRef]
- Xu, X.; Huang, X.; Zhang, Y.; Yu, D. Long-Term Changes in Water Clarity in Lake Liangzi Determined by Remote Sensing. Remote Sens. 2018, 10, 1441. [Google Scholar] [CrossRef] [Green Version]
- Chanat, S.V.; Shanmugam, P. A Model for the Vertical Chlorophyll-a Distribution in the Bay of Bengal Using Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2019, 58, 704–712. [Google Scholar] [CrossRef]
- Pereira, F.J.S.; Costa, C.A.G.; Foerster, S.; Brosinsky, A.; de Araujo, J.C. Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 153–161. [Google Scholar] [CrossRef]
- Zeng, C.; Binding, C. The Eect of Mineral Sediments on Satellite Chlorophyll-a Retrievals from Line-Height Algorithms Using Red and Near-Infrared Bands. Remote Sens. 2019, 11, 2306. [Google Scholar] [CrossRef] [Green Version]
- Kutser, T.; Miller, H.; Arst, T.; Kaarmann, L.; Milius, A. Telespectrometrical estimation of water transparency, chlorophyll-a and total phosphorus concentration of Lake Peipsi. Int. J. Remote Sens. 1995, 16, 3069–3085. [Google Scholar] [CrossRef]
Methods | Training Set | Test Set | ||
---|---|---|---|---|
RMSE (mg/L) | RMSE (mg/L) | |||
Linear regression of band combinations | 0.74 | 0.031 | 0.59 | 0.038 |
ANN without nonlinear components | 0.78 | 0.032 | 0.70 | 0.038 |
ANN with nonlinear components | 0.86 | 0.026 | 0.73 | 0.037 |
Methods | Training Set | Test Set | ||
---|---|---|---|---|
RMSE (μg/L) | RMSE (μg/L) | |||
Linear regression of band combinations | 0.65 | 4.6 | 0.47 | 5.7 |
ANN without nonlinear components | 0.66 | 4.5 | 0.57 | 5.1 |
ANN with nonlinear components | 0.84 | 3.1 | 0.73 | 4.1 |
Wavelength (nm) | Band | Change Rate after Setting the Component to 0 | Band Average | |||||||
---|---|---|---|---|---|---|---|---|---|---|
405–420 | 8 | −1.3 | −1 | −1.8 | −1.7 | −4.8 | −2.5 | −12.5 | −5 | −3.8 |
438–448 | 9 | −1 | −8.3 | −2.9 | −1 | −2 | −15 | −3.4 | −21.7 | −6.9 |
459–479 | 3 | −12.9 | −1.9 | −12.4 | −12.8 | −12.1 | −0.6 | −10.4 | −2 | −8.1 |
483–493 | 10 | −3.7 | −12.1 | −10.1 | −3.4 | −2.6 | −19.5 | −3.8 | −25.7 | −10.1 |
526–536 | 11 | −4.6 | −34.4 | −13.3 | −4.1 | −1.5 | −48.4 | −0.4 | −59.7 | −20.8 |
546–556 | 12 | −1.6 | −15.9 | −5 | −1.4 | 0 | −5.2 | 0.1 | −9.4 | −4.8 |
545–565 | 4 | −117.7 | −114.1 | −146.5 | −115 | −84.4 | −71.1 | −54 | −38.5 | −92.7 |
620–670 | 1 | −13.3 | −5.3 | −8.6 | −13.2 | −13 | −9.5 | −10.3 | −11.2 | −10.6 |
662–672 | 13h | −2.7 | −7.7 | −5.8 | −1.9 | 1.3 | −11.1 | −0.3 | −12.4 | −5.1 |
662–672 | 13l | −1.7 | −50.4 | −14.2 | −1.4 | 0.1 | −18.1 | 0.3 | −6.6 | −11.5 |
673–683 | 14h | −15.6 | −1.1 | −22.2 | −13.2 | −0.3 | −3.7 | −15 | −6.8 | −9.7 |
673–683 | 14l | −0.1 | −18.9 | −7.2 | 0.2 | 0.9 | −3.8 | 0.2 | −2.5 | −3.9 |
743–753 | 15 | 0.4 | −7.2 | −1 | 0.5 | 0.8 | −4.2 | 0 | −4 | −1.8 |
841–876 | 2 | −26.7 | −31.7 | −47.2 | −26.7 | −25.1 | −6.3 | −14.5 | −3.1 | −22.7 |
862–877 | 16 | −6.9 | −93.4 | −25.1 | −7.8 | −12.5 | −5.2 | −6.4 | −1.8 | −19.9 |
890–920 | 17 | 0.9 | −18 | −14.8 | 1.2 | 3 | −3.2 | −1.6 | −4.7 | −4.7 |
931–941 | 18 | 0.7 | −7.2 | −6.8 | 1 | −10.4 | −1.5 | −35 | −0.9 | −7.5 |
915–965 | 19 | 0.9 | −9.6 | −8 | 0.9 | −0.4 | −1.8 | −1.9 | −0.3 | −2.5 |
1230–1250 | 5 | −64.2 | −7.2 | −179.3 | −53 | 3.8 | −0.9 | 1.5 | −0.3 | −37.5 |
1328–1652 | 6 | −50.2 | −6.3 | −60.8 | −46.5 | −10.9 | −0.8 | 0.6 | −2.4 | −22.2 |
2105–2155 | 7 | 1.6 | −2.7 | −28.2 | 1.5 | −1.8 | −2.3 | −0.8 | −0.1 | −4.1 |
Wavelength (nm) | Band | Change Rate after Setting the Component to 0 | Band Average | |||||||
---|---|---|---|---|---|---|---|---|---|---|
405–420 | 8 | −22.8 | −37.2 | −26.5 | −7.1 | −8.8 | −76.3 | −11.4 | −99.1 | −36.2 |
438–448 | 9 | −4 | −14.7 | −12.2 | −38.2 | −8.8 | −17.2 | −8.6 | −14.8 | −14.8 |
459–479 | 3 | −33.1 | −28.4 | −61.8 | −45.6 | −44.2 | −28.4 | −24.1 | −9.3 | −34.4 |
483–493 | 10 | −14.2 | −13.7 | −45.2 | −52.5 | −23.3 | −25 | −8.3 | −21.3 | −25.4 |
526–536 | 11 | −25.8 | −19.8 | −18.3 | −21.6 | −4.7 | −20.2 | −8.3 | −8.3 | −15.9 |
546–556 | 12 | −9.2 | −21.4 | −52.1 | −9.1 | −7.5 | −18 | −4.1 | −7.5 | −16.1 |
545–565 | 4 | −14.7 | −25.4 | −22.6 | −8.2 | 0.6 | −11.4 | −3.7 | −17.7 | −12.9 |
620–670 | 1 | −21 | −10.6 | −17.7 | −6.4 | −6.3 | −12.2 | −5.1 | −13.2 | −11.6 |
662–672 | 13h | −8.1 | −31.8 | −13.4 | −12.2 | −4.6 | −8.7 | −0.9 | −5.3 | −10.6 |
662–672 | 13l | −1.9 | −5.8 | −13.7 | −1.7 | −4.6 | −8.9 | 0.6 | −5.5 | −5.2 |
673–683 | 14h | −7 | −7.9 | −21 | −6.8 | −3.6 | −3.3 | −2.1 | −5.5 | −7.2 |
673–683 | 14l | −12.4 | −13.4 | −7.5 | −0.9 | −0.7 | −7 | −2.9 | −5.2 | −6.3 |
743–753 | 15 | −6.3 | −22.3 | −8.6 | −7.5 | −0.7 | −0.9 | −2.7 | −6.9 | −7.0 |
841–876 | 2 | −5.8 | −17.2 | −12.9 | −1.7 | 0.9 | −15.7 | 0.7 | −5.8 | −7.2 |
862–877 | 16 | −1.7 | −36.4 | −9.8 | −1.3 | −2.8 | −6.5 | 0.6 | −2.8 | −7.6 |
890–920 | 17 | −0.1 | −13.4 | −9.6 | −8.2 | −0.4 | −6.4 | 2.2 | −4.1 | −5.0 |
931–941 | 18 | 1.2 | −23.1 | −3.5 | 0.8 | −2.1 | −15.2 | 1.4 | −2.3 | −5.4 |
915–965 | 19 | −0.6 | −25.2 | 0.6 | 1.9 | 0.2 | −15.6 | −2 | −10.9 | −6.5 |
1230–1250 | 5 | −0.9 | −5.5 | −9.7 | −5.7 | −2.4 | −2.9 | 0.9 | −1.4 | −3.5 |
1328–1652 | 6 | −5 | −3.2 | −14.8 | −7.1 | −1.2 | 0 | −0.4 | −0.4 | −4.0 |
2105–2155 | 7 | −6.8 | −5.5 | −7 | −6.5 | −3.2 | −0.9 | −1.6 | −0.5 | −4.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, C.; Pu, F.; Li, C.; Xu, X.; Zou, T.; Li, X. Combining Artificial Neural Networks with Causal Inference for Total Phosphorus Concentration Estimation and Sensitive Spectral Bands Exploration Using MODIS. Water 2020, 12, 2372. https://doi.org/10.3390/w12092372
Ding C, Pu F, Li C, Xu X, Zou T, Li X. Combining Artificial Neural Networks with Causal Inference for Total Phosphorus Concentration Estimation and Sensitive Spectral Bands Exploration Using MODIS. Water. 2020; 12(9):2372. https://doi.org/10.3390/w12092372
Chicago/Turabian StyleDing, Chujiang, Fangling Pu, Caoyu Li, Xin Xu, Tongyuan Zou, and Xiangxiang Li. 2020. "Combining Artificial Neural Networks with Causal Inference for Total Phosphorus Concentration Estimation and Sensitive Spectral Bands Exploration Using MODIS" Water 12, no. 9: 2372. https://doi.org/10.3390/w12092372
APA StyleDing, C., Pu, F., Li, C., Xu, X., Zou, T., & Li, X. (2020). Combining Artificial Neural Networks with Causal Inference for Total Phosphorus Concentration Estimation and Sensitive Spectral Bands Exploration Using MODIS. Water, 12(9), 2372. https://doi.org/10.3390/w12092372