Impact of Hydropower Dam Operation and Management on Downstream Hydrogeomorphology in Semi-Arid Environments (Tekeze, Northern Ethiopia)
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Dam Operation and Management
3.2. Downstream Hydrogeomorphic Alterations
4. Results
4.1. General Dam Operation and Management
4.2. Dam-induced Impacts on Downstream Hydrology and River Morphology
4.2.1. Altered Hydrologic Regime
4.2.2. River Bed Degradation and Aggradation
4.2.3. Narrowing of the Active Channel
4.3. Dam Operation and Management in Case of Extreme Reservoir Water Levels
4.4. Impacts on Downstream Hydrology and River Morphology under Extreme Reservoir Levels
4.4.1. Emergency Water Release in 2018
4.4.2. Hydrogeomorphic Impact of the 2018 Emergency Water Release
4.4.3. Socioeconomic Impact of the Emergency Water Releases
5. Discussion
5.1. Future Dam Operation Optimization
5.2. Impacts of Hydropower Dams in (Semi-)Arid Environments with High Inter-Annual Rainfall Variability
5.3. Methodological Lessons from the Tekeze Case Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Williams, G.; Wolman, M. Downstream Effects of Dams on Alluvial Rivers; United States Government Publishing Office: Washington, DC, USA, 1984; Volume 1286. [Google Scholar]
- Graf, W.L. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 2006, 79, 336–360. [Google Scholar] [CrossRef]
- Petts, G.; Pratts, J. Channel changes following reservoir construction on a Lowland English River. Catena 1983, 10, 77–85. [Google Scholar] [CrossRef]
- Kondolf, G.M. Hungry Water: Effects of Dams and Gravel Mining on River Channels. Environ. Manag. 1997, 21, 533–551. [Google Scholar] [CrossRef] [PubMed]
- Brandt, S.A. Classification of geomorphological effects downstream of dams. Catena 2000, 40, 375–401. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Swanson, M.L. Channel adjustments to reservoir construction and gravel extraction along Stony Creek, California. Environ. Geol. 1993, 21, 256–269. [Google Scholar] [CrossRef]
- Musselman, Z.A. The localized role of base level lowering on channel adjustment of tributary streams in the Trinity River basin downstream of Livingston Dam, Texas, USA. Geomorphology 2011, 128, 42–56. [Google Scholar] [CrossRef]
- Petts, G.; Thoms, M.C. Channel aggradation below Chew Valley Lake, Somerset, U.K. Catena 1986, 13, 305–320. [Google Scholar] [CrossRef]
- Stromberg, J.C.; Lite, S.J.; Marler, R.; Paradzick, C.; Shafroth, P.B.; Shorrock, D.; White, J.M.; White, M.S. Altered stream-flow regimes and invasive plant species: The Tamarix case. Glob. Ecol. Biogeogr. 2007, 16, 381–393. [Google Scholar] [CrossRef]
- Poff, N.L.; Hart, D.D. How Dams Vary and Why It Matters for the Emerging Science of Dam Removal. Bioscience 2002, 52, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Moeini, R.; Afshar, A.; Afshar, M.H. Fuzzy rule-based model for hydropower reservoirs operation. Int. J. Electr. Power Energy Syst. 2011, 33, 171–178. [Google Scholar] [CrossRef]
- Aboutalebi, M.; Bozorg-Haddad, O.; Loáiciga, H.A. Optimal Monthly Reservoir Operation Rules for Hydropower Generation Derived with SVR-NSGAII. J. Water Resour. Plan. Manag. 2015, 141, 04015029. [Google Scholar] [CrossRef] [Green Version]
- Bianucci, P.; Sordo, A.; Moralo, J.; Garrote, L. Probabilistic-Multiobjective Comparison of User-Defined Operating Rules. Case Study: Hydropower Dam in Spain. Water 2015, 7, 956–974. [Google Scholar] [CrossRef] [Green Version]
- Tayebiyan, A.; Ali, T.A.M.; Ghazali, A.H.; Malek, M.A. Optimization of Exclusive Release Policies for Hydropower Reservoir Operation by Using Genetic Algorithm. Water Resour. Manag. 2016, 30, 1203–1216. [Google Scholar] [CrossRef]
- Zou, R.; Lung, W.S. Robust Water Quality Modeling Using Alternating Fitness Genetic Algorithm Using an Alternating Fitness Genetic Algorithm. J. Water Resour. Plan. Manag. 2004, 130, 93–111. [Google Scholar] [CrossRef]
- McCartney, M.; King, J. Use of decision support systems to improve dam planning and dam operation in Africa. In Research for Development Series; No. 2; CGIAR: Colombo, Sri Lanka, 2011. [Google Scholar]
- Giupponi, C.; Sgobbi, A. Decision Support Systems for Water Resources Management in Developing Countries: Learning from Experiences in Africa. Water 2013, 5, 798–818. [Google Scholar] [CrossRef] [Green Version]
- Jager, H.I.; Smith, B.T. Sustainable reservoir operation: Can we generate hydropower and preserve ecosystem values? River Res. Appl. 2008, 24, 340–352. [Google Scholar] [CrossRef]
- Block, P. Tailoring seasonal climate forecasts for hydropower operations in Ethiopia’s upper Blue Nile basin. Hydrol. Earth Syst. Sci. Discuss. 2010, 7, 3765–3802. [Google Scholar] [CrossRef] [Green Version]
- Conway, D.; Dalin, C.; Landman, W.; Osborn, T.J. Hydropower plans in eastern and southern Africa increase risk of concurrent climate-related electricity supply disruption. Nat. Energy 2017, 2, 946–953. [Google Scholar] [CrossRef]
- McCartney, M.P. Decision Support Systems for Large Dam Planning and Operation in Africa; Working Paper No. 119; International Water Management Institute: Colombo, Sri Lanka, 2007. [Google Scholar]
- Crow-Miller, B.; Webber, M.; Molle, F. The (re)turn to infrastructure for water management? Water Altern. 2017, 10, 195–207. [Google Scholar]
- Schulz, C.; Adams, W.M. Debating dams: The World Commission on Dams 20 years on. Wiley Interdiscip. Rev. Water 2019, 6, 1–19. [Google Scholar] [CrossRef]
- International Hydropower Association (IHA). Hydropower Status Report 2019; IHA: London, UK, 2019. [Google Scholar]
- Acreman, M.C. Managed Flood Releases from Reservoirs: Issues and Guidance. In Report to DFID and the World Commission on Dams; Thematic Review No. 2.1; Centre for Ecology and Hydrology: Wallingford, UK, 2000. [Google Scholar]
- Annys, S.; Van Passel, S.; Dessein, J.; Asfaha, T.G.; Adgo, E.; Nyssen, J. Small-scale irrigation expansion along the dam-regulated Tekeze River in northern Ethiopia. Int. J. Water Resour. Dev. 2020. [Google Scholar] [CrossRef]
- Ethiopian Electric Power Corporation (EEPCo). Tekeze Hydroelectric Power Plant; EEPCo: Addis Ababa, Ethiopia, 2009. [Google Scholar]
- Howard Humphreys & Partners; Coyne et Bellier; Rust Kennedy & Donkin. Tekeze Medium Hydropower Project—Feasibility Study—Main Report; Addis Ababa, Ethiopia, 1997. [Google Scholar]
- Ismail, E.H.; Abdelsalam, M.G. Morpho-tectonic analysis of the Tekeze River and the Blue Nile drainage systems on the Northwestern Plateau, Ethiopia. J. Afr. Earth Sci. 2012, 69, 34–47. [Google Scholar] [CrossRef]
- Ethiopian Electric Power (EEP). Available online: www.eep.com.et (accessed on 4 May 2020).
- Digna, R.; Castro-Gama, M.; Van Der Zaag, P.; Mohamed, Y.A.; Corzo, G.; Uhlenbrook, S. Optimal Operation of the Eastern Nile System Using Genetic Algorithm, and Benefits Distribution of Water Resources Development. Water 2018, 10, 921. [Google Scholar] [CrossRef] [Green Version]
- Fazzini, M.; Bisci, C.; Billi, P. The Climate of Ethiopia. In Landscapes and Landforms of Ethiopia; Billi, P., Ed.; Springer: Dordrecht, Germany, 2015; pp. 65–87. [Google Scholar]
- Tesfaye, S.; Taye, G.; Birhane, E.; Van Der Zee, S.E. Observed and model simulated twenty-first century hydro-climatic change of Northern Ethiopia. J. Hydrol. Reg. Stud. 2019, 22, 100595. [Google Scholar] [CrossRef]
- Gebrehiwot, T.; Van Der Veen, A. Climate change vulnerability in Ethiopia: Disaggregation of Tigray Region. J. East. Afr. Stud. 2013, 7, 607–629. [Google Scholar] [CrossRef]
- Beck, H.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- National Meteorological Agency (NMA). Precipitation and Temperature Data (Humera and Tekeze Hydropower Stations), 2016; NMA: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Ethiopia Electric Power (EEP). Daily Lake Levels in the Tekeze Reservoir, 2008–2019; EEP: Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Ethiopia Electric Power (EEP). Average Hourly Energy Production at the Tekeze Hydropower Station, 2018; EEP: Addis Ababa, Ethiopia, 2018. [Google Scholar]
- Ethiopia Electric Power (EEP). Average Daily Energy Production at the Tekeze Hydropower Station, 2010–2019; EEP: Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Ethiopia Electric Power (EEP). Mid-Level Outlet Releases from the Tekeze Hydropower Station, 2018–2019; EEP: Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Kohli, A.; Frenken, K. Evaporation from Artificial Lakes and Reservoirs; Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Asfaha, T.G.; Frankl, A.; Haile, M.; Zenebe, A.; Nyssen, J. Sediment flux dynamics as fingerprints of catchment rehabilitation: The case of western Rift Valley escarpment of northern Ethiopia. Geomorphology 2015, 250, 220–235. [Google Scholar] [CrossRef]
- Shaltout, K.H. Post-agricultural succession in the Nile Delta region. J. Arid. Environ. 1994, 28, 31–38. [Google Scholar] [CrossRef]
- Sher, A.; Wiegand, K.; Ward, D. Do Acacia and Tamarix trees compete for water in the Negev desert? J. Arid. Environ. 2010, 74, 338–343. [Google Scholar] [CrossRef]
- Birken, A.; Cooper, D.J. Processes of Tamarix Invasion and Floodplain Development along the Lower Green River, Utah. Ecol. Appl. 2006, 16, 1103–1120. [Google Scholar] [CrossRef]
- Allred, T.M.; Schmidt, J.C. Channel narrowing by vertical accretion along the Green River near Green River, Utah. Geol. Soc. Am. Bull. 1999, 111, 1757–1772. [Google Scholar] [CrossRef]
- Archfield, S.A.; Vogel, R.M. Map correlation method: Selection of a reference streamgage to estimate daily streamflow at ungaged catchments. Water Resour. Res. 2010, 46, 1–15. [Google Scholar] [CrossRef]
- Liu, B.M.; Collick, A.S.; Zeleke, G.; Adgo, E.; Easton, Z.M.; Steenhuis, T.S. Rainfall-discharge relationships for a monsoonal climate in the Ethiopian highlands. Hydrol. Process. 2008, 22, 1059–1067. [Google Scholar] [CrossRef]
- Ministry of Water, Irrigation and Electricity (MoWIE). Discharge data for the Embamadre Station, 1967–2015; MoWIE: Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Zegeye, A.D.; Langendoen, E.J.; Tilahun, S.A.; Mekuria, W.; Poesen, J.; Steenhuis, T.S. Root reinforcement to soils provided by common Ethiopian highland plants for gully erosion control. Ecohydrol. 2018, 11, e1940. [Google Scholar] [CrossRef]
- Guan, Z.; Wang, X.; Bian, X.; Wang, L.; Jia, Z. Analysis of causes of outdoor insulators damages on HV and UHV transmission lines in China. In Proceedings of the 2014 IEEE Electrical Insulation Conference (EIC), Philadelphia, PA, USA, 8–11 June 2014; pp. 227–230. [Google Scholar]
- Sridharan, V.; Broad, O.; Shivakumar, A.; Howells, M.; Boehlert, B.; Groves, D.G.; Rogner, H.-H.; Taliotis, C.; Neumann, J.E.; Strzepek, K.M.; et al. Resilience of the Eastern African electricity sector to climate driven changes in hydropower generation. Nat. Commun. 2019, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Kahsay, K.D.; Pingale, S.; Hatiye, S.D. Impact of climate change on groundwater recharge and base flow in the sub-catchment of Tekeze basin, Ethiopia. Groundw. Sustain. Dev. 2018, 6, 121–133. [Google Scholar] [CrossRef]
- Abera, F.F.; Asfaw, D.H.; Engida, A.N.; Melesse, A.M. Optimal Operation of Hydropower Reservoirs under Climate Change: The Case of Tekeze Reservoir, Eastern Nile. Water 2018, 10, 273. [Google Scholar] [CrossRef] [Green Version]
- Cole, M.A.; Elliott, R.J.; Strobl, E. Climate Change, Hydro-Dependency, and the African Dam Boom. World Dev. 2014, 60, 84–98. [Google Scholar] [CrossRef]
- Alexander, S.; Wu, S.; Block, P. Model Selection Based on Sectoral Application Scale for Increased Value of Hydroclimate-Prediction Information. J. Water Resour. Plan. Manag. 2019, 145, 04019006. [Google Scholar] [CrossRef]
- Alexander, S.; Yang, G.; Addisu, G.; Block, P. Forecast-informed reservoir operations to guide hydropower and agriculture allocations in the Blue Nile basin, Ethiopia. Int. J. Water Resour. Dev. 2020. [Google Scholar] [CrossRef]
- Koppa, A.; Gebremichael, M.; Zambon, R.C.; Yeh, W.W.-G.; Hopson, T.M. Seasonal Hydropower Planning for Data-Scarce Regions Using Multimodel Ensemble Forecasts, Remote Sensing Data, and Stochastic Programming. Water Resour. Res. 2019, 55, 8583–8607. [Google Scholar] [CrossRef]
- Demissie, A.A.; Solomon, A. Power system sensitivity to extreme hydrological conditions as studied using an integrated reservoir and power system dispatch model, the case of Ethiopia. Appl. Energy 2016, 182, 442–463. [Google Scholar] [CrossRef]
- Basheer, M.; Sulieman, R.; Ribbe, L. Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty. Int. J. Water Resour. Dev. 2019, 1–26. [Google Scholar] [CrossRef]
- Petts, G.E.; Gurnell, A.M. Dams and geomorphology: Research progress and future directions. Geomorphol 2005, 71, 27–47. [Google Scholar] [CrossRef]
- Michálková, M.; Piégay, H.; Kondolf, G.; Greco, S. Lateral erosion of the Sacramento River, California (1942–1999), and responses of channel and floodplain lake to human influences. Earth Surf. Process. Landforms 2011, 36, 257–272. [Google Scholar] [CrossRef]
- Casado, A.; Peiry, J.-L.; Campo, A.M. Geomorphic and vegetation changes in a meandering dryland river regulated by a large dam, Sauce Grande River, Argentina. Geomorphol 2016, 268, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Brotherson, J.D.; Field, D. Tamarix: Impacts of a successful weed. Rangel. Arch. 1987, 9, 110–112. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annys, S.; Ghebreyohannes, T.; Nyssen, J. Impact of Hydropower Dam Operation and Management on Downstream Hydrogeomorphology in Semi-Arid Environments (Tekeze, Northern Ethiopia). Water 2020, 12, 2237. https://doi.org/10.3390/w12082237
Annys S, Ghebreyohannes T, Nyssen J. Impact of Hydropower Dam Operation and Management on Downstream Hydrogeomorphology in Semi-Arid Environments (Tekeze, Northern Ethiopia). Water. 2020; 12(8):2237. https://doi.org/10.3390/w12082237
Chicago/Turabian StyleAnnys, Sofie, Tesfaalem Ghebreyohannes, and Jan Nyssen. 2020. "Impact of Hydropower Dam Operation and Management on Downstream Hydrogeomorphology in Semi-Arid Environments (Tekeze, Northern Ethiopia)" Water 12, no. 8: 2237. https://doi.org/10.3390/w12082237
APA StyleAnnys, S., Ghebreyohannes, T., & Nyssen, J. (2020). Impact of Hydropower Dam Operation and Management on Downstream Hydrogeomorphology in Semi-Arid Environments (Tekeze, Northern Ethiopia). Water, 12(8), 2237. https://doi.org/10.3390/w12082237