Physical and Mathematical Fluid Mechanics
Abstract
:1. Introduction
2. Overview of this Special Issue
3. Conclusions
Funding
Conflicts of Interest
References
- Heath, T. The Works of Archimedes; Dover Books on Mathematics; Dover Publications: New York, NY, USA, 2002. [Google Scholar]
- Driver, R.D. Torricelli’s Law: An Ideal Example of an Elementary ODE. Am. Math. Monthly 1998, 105, 453–455. [Google Scholar]
- Merriman, M. Treatise on Hydraulics; J. Wiley: Hoboken, NJ, USA, 1903. [Google Scholar]
- Cohen, I. Introduction to Newton’s “Principia”; History of Science; Harvard University Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Bernoulli, D. Hydrodynamica, Sive, De viribus et Motibus Fluidorum Commentarii; Dulsecker: London, UK, 1738. [Google Scholar]
- Lamb, H. Hydrodynamics; Cambridge University Press: Cambridge, UK, 1974. [Google Scholar]
- Panton, R.L. Incompressible Flow; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Batchelor, G.K. An Introduction to Fluid Dynamics; Cambridge Mathematical Library, Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Spurk, J.H.; Aksel, N. Fluid Mechanics, 2nd ed.; Springer: Berlin, Germany, 2008. [Google Scholar]
- Mayes, C.; Schlichting, H.; Krause, E.; Oertel, H.; Gersten, K. Boundary-Layer Theory; Physic and astronomy; Springer: Berlin, Germany, 2003. [Google Scholar]
- Reynolds, O. III. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Proc. R. Soc. Lon. 1883, 35, 84–99. [Google Scholar] [CrossRef] [Green Version]
- Batchelor, G.K. Geoffrey Ingram Taylor, 7 March 1886 - 27 June 1975. Biograph. Mem. Fell. R. Soc. 1976, 22, 565–633. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 1991, 434, 9–13. [Google Scholar] [CrossRef]
- Wang, H.; Peng, G.; Chen, M.; Fan, J. Analysis of the Interconnections between Classic Vortex Models of Coherent Structures Based on DNS Data. Water 2019, 11, 2005. [Google Scholar] [CrossRef] [Green Version]
- Germann, P. Viscosity Controls Rapid Infiltration and Drainage, Not the Macropores. Water 2020, 12, 337. [Google Scholar] [CrossRef] [Green Version]
- Jordan, P.M. Poroacoustic Traveling Waves under the Rubin–Rosenau–Gottlieb Theory of Generalized Continua. Water 2020, 12, 807. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Chen, J.; Han, Y.; Ma, Z.; Wu, J. Study on the Characteristic Point Location of Depth Average Velocity in Smooth Open Channels: Applied to Channels with Flat or Concave Boundaries. Water 2020, 12, 430. [Google Scholar] [CrossRef] [Green Version]
- Scholle, M.; Marner, F.; Gaskell, P.H. Potential Fields in Fluid Mechanics: A Review of Two Classical Approaches and Related Recent Advances. Water 2020, 12, 1241. [Google Scholar] [CrossRef]
- Cruzeiro, A.B. Stochastic Approaches to Deterministic Fluid Dynamics: A Selective Review. Water 2020, 12, 864. [Google Scholar] [CrossRef] [Green Version]
- Cui, F.; Wu, Q.; Xiong, C.; Chen, X.; Meng, F.; Peng, J. Damage Characteristics and Mechanism of a 2010 Disastrous Groundwater Inrush Occurred at the Luotuoshan Coalmine in Wuhai, Inner Mongolia, China. Water 2020, 12, 655. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scholle, M. Physical and Mathematical Fluid Mechanics. Water 2020, 12, 2199. https://doi.org/10.3390/w12082199
Scholle M. Physical and Mathematical Fluid Mechanics. Water. 2020; 12(8):2199. https://doi.org/10.3390/w12082199
Chicago/Turabian StyleScholle, Markus. 2020. "Physical and Mathematical Fluid Mechanics" Water 12, no. 8: 2199. https://doi.org/10.3390/w12082199
APA StyleScholle, M. (2020). Physical and Mathematical Fluid Mechanics. Water, 12(8), 2199. https://doi.org/10.3390/w12082199