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Abstract: We investigate linear and nonlinear poroacoustic waveforms under the Rubin–Rosenau–
Gottlieb (RRG) theory of generalized continua. Working in the context of the Cauchy problem, on both
the real line and the case with periodic boundary conditions, exact and asymptotic expressions are
obtained. Numerical simulations are also presented, von Neumann–Richtmyer “artificial” viscosity
is used to derive an exact kink-type solution to the poroacoustic piston problem, and possible
experimental tests of our findings are noted. The presentation concludes with a discussion of possible
follow-on investigations.
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1. Introduction

What is known today as the “RRG theory” was put forth by Rubin et al. [1] in 1995.
This phenomenological-based theory of generalized continua is thought capable of modeling dispersive
effects caused by the introduction of a medium’s characteristic length, which Rubin et al. denote as
α. Under RRG theory, α is regarded as an inherent material property. From the modeling standpoint,
this theory exhibits a number of appealing features, the two most important of which are the following:
(i) it is only the pressure stress (i.e., isotropic) part of the Cauchy (i.e., total) stress tensor and the
specific Helmholtz free energy that are modified, but these modifications are achieved by adding
perburtative terms, which must satisfy certain constraint equations, to the constitutive relations of the
former and latter; and (ii), no additional boundary nor initial conditions, beyond those required to
solve classically formulated problems, are needed ([1], p. 4063).

To date, RRG theory has only been applied to single-phase media; see, e.g., Ref. [2] and those
cited therein. Hence, there is an obvious need to investigate the nature of the solutions, e.g., those of
the traveling wave type, predicted by this theory in the case of multi-phase media.

Accordingly, the aim of this communication is to carry out a preliminary investigation of RRG
theory in the context of acoustic problems involving propagation in dual-phase (specifically, fluid +
solid) media—dual-phase media being, of course, the simplest case of multi-phase media. Employing
both analytical and numerical methodologies, we consider linear and finite-amplitude poroacoustic
propagation under the RRG-based generalization of what some refer to as the Brinkman poroacoustic
model (BPM) (Although he does not refer to it as such, the general, multi-D, version of the BPM follows
on setting C = 0 in Burmeister [3].). Here, it should be noted that the original version of the drag law
on which the BPM is based reads (see, e.g., Refs. [4,5])

∇P = µ̃χ∇2u− (µχ/K)u. (1)
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In this relation, u is the intrinsic average velocity of the fluid, which it is related to v, the Darcy
velocity, via the Dupuit–Forchheimer relationship v = χu ([4], p. 5); P is a pressure, an intrinsic
quantity, which is not the thermodynamic pressure ([4], §1.4.1); µ is the usual shear viscosity coefficient;
µ̃ is an effective viscosity ([4], §1.5.3), which is often referred to as the Brinkman viscosity; and K > 0 and
χ ∈ (0, 1), the permeability and porosity of the solid matrix, are assumed to be constants. We should
also note that Equation (1) reduces to Darcy’s law on setting µ̃ := 0.

Before beginning our analysis, we should point out that when traveling wave solutions (TWS)s in
the form of kinks are encountered below, their shock thicknesses shall be expressed using Prandtl’s
definition (see, e.g., (Ref. [6], p. 680)), viz.:

shock thickness :=
F(−∞)− F(+∞)

max
z∈R
|dF(z)/dz| , (2)

where z represents the wave (i.e., similarity) variable. Herein, all traveling wave profiles shall be taken
to be propagating to the right along the axis corresponding to the wave variable under consideration.

2. Mathematical Formulations

2.1. Poroacoustic Model Systems

When entropy production in the fluid, which we hereafter take to be a perfect gas [7], is ignored
(i.e., we take the flow to be homentropic ([7], p. 60)) and the porous matrix is regarded as being both
stationary and composed of a thermally non-conducting rigid solid, the 1D versions of the RRG-based
model we propose and the BPM become, in the case of propagation along the x-axis,

$t + u$x + $ux = 0, (3a)

$(ut + uux) = µ̃χuxx − (µχ/K)u−
{
℘x, BPM,

[℘− 2α2$(uxt + uuxx)]x, RRG,
(3b)

℘ ≈ ℘0($/$0)
γ (n ≈ n0). (3c)

In System (3), ℘(> 0) is the thermodynamic pressure; $(> 0) is the mass density of the gas; n is
the specific entropy of the gas; the parameter γ denotes the ratio of specific heats, where γ ∈ (1, 5/3]
in the case of perfect gases; we take α(> 0), which carries the unit of length, to be a constant (That
is, we have assumed the simplest version of RRG theory; see (Ref. [1], Equation (20)).); the problem
geometry dictates that, here and henceforth, u = (u(x, t), 0, 0), ℘ = ℘(x, t), and $ = $(x, t); and a zero
(“0”) subscript attached to a dependent variable denotes the (constant) equilibrium state value of that
variable, where we note that u0 = (0, 0, 0).

Here, we observe that since the flow has been assumed homentropic, our RRG-based poroacoustic
model is obtained by perturbing only the pressure tensor term in the BPM. Also, we record for later
reference that c0 =

√
γ℘0/$0 is the (constant) equilibrium state value of the sound speed, i.e., the speed

of sound in the undisturbed gas; see, e.g., (Ref. [7], §4.3).

2.2. Finite-Amplitude Equation of Motion: The Case µ := const.

We begin this sub-section with the following observation: Because ∇ × u = (0, 0, 0) holds
identically under the present (1D) geometry, it follows that u = ∇φ; therefore, u(x, t) = φx(x, t), where
φx denotes the scalar velocity potential.

Hence, on invoking the finite-amplitude approximation, and introducing the following
dimensionless variables:

u� = u/Up, s = ($− $0)/$0, φ� = φ/(UpL), x� = x/L, t� = t(c0/L), (4)
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where the positive constants L and Up respectively denote a macro-length scale characteristic of the
propagation domain and the magnitude of the peak particle velocity in the gas, it is not difficult to
establish (See, e.g., the derivation performed in (Ref. [8], §2), and note that (Ref. [8], Equation (10)) is
the σ, δ := 0 special case of Equation (5) herein.) that the µ := const. case of System (3) reduces to the
weakly-nonlinear, bi-directional, equation of motion (EoM)

φtt − [1− 2ε(β− 1)φt]φxx + ε∂t(φx)
2 = σφtxx + a2

0φttxx − δφt, (5)

where here and henceforth all diamond (�) superscripts have been suppressed for convenience.
In Equation (5), which we note reduces to the corresponding EoM for the (1D) BPM on setting a0 := 0,
ε = Up/c0 is the Mach number, where ε� 1 is assumed; δ = νχL/(c0K) is the dimensionless Darcy
coefficient, where ν = µ/$0 is the kinematic viscosity of the gas; a0, the dimensionless version of
α, is given by a0 = α

√
2/L; we have set σ := χ/ReB, where ReB = c0L/ν̃ is a Reynolds number,

and where ν̃ = µ̃/$0; and β(> 1) denotes the coefficient of nonlinearity [9], which in the case of a perfect
gas is given by

β = (γ + 1)/2. (6)

In deriving Equation (5) we have assumed that δ, σ, a0, |s| ∼ O(ε) and, in accordance with the
finite-amplitude approximation, only nonlinear terms O(ε2) have been neglected.

2.3. Right-Running Equations of Motion for the Case µ := const.

Although derived under the finite-amplitude approximation, Equation (5) is still too complicated
for treatment by analytical means. Fortunately, however, the nature of the problems to be considered
below is such that we may employ the uni-directional approximation to reduce the order of Equation (5)
by one and confine its nonlinearity to a single (quadratic) term. Omitting the details, we find that
under, say, the right-running case of this approximation (See, e.g., Crighton’s ([10], p. 16) derivation
of the acoustic version of Burgers’ equation.), which in the present setting reads φx ' −φt, our EoM
becomes, after making use of the relation u(x, t) = φx(x, t) and simplifying,

ut + ux + εβuux − 1
2 a2

0utxx +
1
2 δu = 1

2 σuxx, (7)

which on switching to the variables X = x− t and T = t is further reduced to

uT + εβuuX − 1
2 a2

0uTXX + 1
2 δu = 1

2 σuXX . (8)

If we once again make use of the right-running approximation, which now takes the form
uT ' −uX, to re-express only the third order term in Equation (8), which is justified since a0 ∼ O(ε)
(i.e., (a2

0/2)uTXX is a “small” term), then Equation (8) assumes its final form, specifically,

uT + εβuuX + 1
2 a2

0uXXX + 1
2 δu = 1

2 σuXX , (9)

a PDE which we term the damped Burgers–KdV (dBKdV) equation.
In closing this sub-section we stress that Equations (7)–(9) apply only to right-running waveforms;

i.e., to problems wherein reflection (to the left) is not possible.

3. Comparison of Linearized EoMs: The Cauchy Problem

In this section we compare the BPM with its RRG-based counterpart under the linear
approximation, which at the EoM level corresponds to setting ε := 0. We do so in the context
of what is perhaps the best known problem from classical PDE theory.



Water 2020, 12, 807 4 of 14

To this this end, we consider the linearized version of Equation (9) in the setting of the following
initial value problem (IVP), i.e., in the setting of the classical Cauchy problem:

uT + 1
2 a2

0uXXX + 1
2 δu = 1

2 σuXX , X ∈ R, T > 0, (10a)

u(X, 0) = f (X), X ∈ R. (10b)

Here, we take f (X), our initial condition (IC), to be defined on the real line and such that its
Fourier transform exists.

On applying the Fourier transform to both Equation (10a) and the IC, and then solving the
resulting (first order) ODE, it is readily shown that

û(k, T) = f̂ (k) exp
[
− 1

2

(
δ + σk2 − ia2

0k3
)

T
]
, (11)

where k is the Fourier transform parameter and a hat over a quantity denotes the Fourier transform of
that quantity. In turn, applying F−1(·), the inverse Fourier transform, to Equation (11) gives

u(X, T) =
1

2π
exp(−δT/2)

∫ ∞

−∞
f̂ (k) exp

[
− 1

2

(
σk2 − ia2

0k3
)

T
]
exp(ikX)dk. (12)

3.1. The RRG Case: a0 > 0

Using the convolution theorem, and letting Ai(·) denote the Airy function of the first kind,
the RRG (i.e., a0 > 0) case of Equation (12) can be recast in the more explicit form

u(X, T) = exp(−δT/2)
(

2
3a2

0T

)1/3

×
∫ ∞
−∞ F

−1
[

f̂ (k) exp
(
− 1

2 σk2
)]

Ai
[
(X−Y)

(
2

3a2
0T

)1/3
]

dY (T > 0).
(13)

For obvious reasons, the following two special cases of f (X) are of particular interest:

u(X, T) = exp(−δT/2)

(
2

3a2
0T

)1/3

×


1√

2πσT

∫ ∞
−∞ exp

(
− 1

2σY2/T
)

Ai
[
(X−Y)

(
2

3a2
0T

)1/3
]

dY, f (X) = d(X)

1√
1+bσT

∫ ∞
−∞ exp

[
− 1

2 b(1 + bσT)−1Y2
]

Ai
[
(X−Y)

(
2

3a2
0T

)1/3
]

dY, f (X) = e−bX2/2

(T > 0). (14)

Here, d(·) denotes the Dirac delta function and b(> 0) is a (dimensionless) constant.

3.2. The BPM Case: a0 := 0

If we assume instead the BPM, then the solution of IVP (10) is readily obtained on setting a0 := 0
in Equation (12); for the two aforementioned cases of f (X), we find that

u(X, T) =


[

exp(−δT/2)√
2πσT

]
exp

(
− 1

2σ X2/T
)

, f (X) = d(X)

[
exp(−δT/2)√

1+bσT

]
exp

[
− 1

2 b(1 + bσT)−1X2
]
, f (X) = e−bX2/2

(T > 0). (15)

3.3. Remarks: RRG vs. BPM

With regard to the Gaussian IC, the primary difference between the linearized RRG and BPM
cases is that the pulse profile corresponding to the former instantly becomes oscillatory about the
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X-axis, due to the Airy function in its integrand, while that of the latter maintains, for all T > 0,
the shape and strict positivity of the initiating Gaussian. The clearly contrasting behaviors exhibited
by these two models should, therefore, allow researchers to experimentally determine which of the
two best describes propagation in a given poroacoustic system.

4. Comparison of Right-Running, Weakly-Nonlinear, EoMs: Special Cases with µ := const.

Before examining it in its most general form, and for the benefit of those readers who are not well
acquainted with the intricacies of nonlinear evolution equations, it is instructive to first review selected
special cases of Equation (9). The right-running models discussed in the next three sub-sections, all of
which, it should be noted, have applications beyond poroacoustics, will each have a role to play in the
analysis performed in Section 4.4.

4.1. Case (I): Damped KdV (dKdV) Equation

This case follows on setting σ := 0 (i.e., setting µ̃ := 0), under which Equation (9) reduces to

uT + εβuuX + 1
2 a2

0uXXX + 1
2 δu = 0. (16)

This PDE, we observe, is the RRG-modified version of the right-running Darcy–Jordan model;
see Section 4.3 below.

Since we have assumed δ� 1, applying the Kryloff–Bogoliubov asymptotic expansion method to
the dKdV equation yields, as Ott and Sudan [11] have shown, the large-T expression

u(X, T) ∼ exp(−2δT/3) sech2
[
(ζ/a0)

√
εβ
6 exp(−2δT/3)

]
, T ∼ O(1/δ), (17)

where we have taken N(0) = 1 (see Ref. [11]), and we let

ζ = X− εβ
2δ

[
1− exp

(
− 2

3 δT
)]

; (18)

see also Ref. [12], as well as Ref. [13] (Ref. [13] contains a number of recently identified typographical
errors; see Appendix A below.) and those cited therein. Equation (17) represents a damped,
and decelerating, solitary waveform, and as such it cannot be a soliton in the classical sense [14].
Note, however, that the acoustic version of the classic soliton solution of the KdV equation (see Ref. [8])
is recovered as the limiting case

u(X, T) = sech2
[

a−1
0 (X− εβT/3)

√
εβ
6

]
(δ→ 0). (19)

4.2. Case (II): Damped Burgers’ Equation

This case, which corresponds to setting a0 := 0, reads

uT + εβuuX + 1
2 δu = 1

2 σuXX . (20)

Equation (20) is the right-running EoM stemming from the BPM, and in this context it has recently
been investigated by Rossmanith and Puri [15].

As shown by Nimmo and Crighton [16], this generalization of Burgers’ equation does not admit
a linearizing (i.e., Cole–Hopf type) transform. As shown by Malfliet [17], however, its TWS, which
assumes the form of a damped kink, is readily approximated. To the order expressed explicitly in
Ref. [17], the TWS of Equation (20) is given by

u(X, T) ≈ 1
2 exp(−δT/2)[1−Y(X, T)]{1 + a3(T)[1 + Y(X, T)]Y3(X, T)

+a5(T) [1 + Y(X, T)]Y5(X, T)}.
(21)
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Here,

Y(X, T) := tanh
[

2
λB

(
X− εβ[1− exp(−δT/2)]

δ

)]
, (22)

where λB = 4σ/(εβ) is the shock thickness exhibited by the TWS given below in Equation (25);

a3(T) = −(1− exp(−δT/2))/3; (23)

and
a5(T) = −[128− 160 exp(−δT/2) + δλ2

B exp(−δT/2)/σ + 32 exp(−δT)]/240. (24)

In Ref. [17], the parameter c, which herein has the value c = 2/λB, is defined so that Equation (21)
yields the limiting case

u(X, T) = 1
2

{
1− tanh

[
2

λB

(
X− 1

2 εβT
)]}

(δ→ 0). (25)

Equation (25) and λB are the TWS, which we note takes the form of a Taylor shock, and
corresponding shock thickness, which was determined using Equation (2), respectively, admitted by
the classic Burgers equation.

4.3. Case (III): Damped Riemann Equation

In the poroacoustic context, this case corresponds to the right-running version of the
weakly-nonlinear Darcy–Jordan model (Also known as the Jordan–Darcy model; see Ciarletta and
Straughan [18], as well as Straughan [5].) (DJM) [19]; specifically, the first order PDE [20]

uT + εβuuX + 1
2 δu = 0, (26)

which follows on setting a0 := 0 and σ := 0 in Equation (9).
In the setting of the Cauchy problem, the exact solution of the damped Riemann equation is

readily determined; see, e.g., Crighton ([21], p. 196). In the particular case of Equation (26), this solution
can be expressed as [20]

u(X, T) = u0(ξ) exp(−δT/2), (27a)

α?(X− ξ) = u0(ξ)[1− exp(−δT/2)]. (27b)

Here, ξ = ξ(X, T) is the wave variable; u0(ξ) is the IC; and α?, the critical amplitude value for
acceleration waves under the DJM, is given by [19]

α? =
δ

2εβ
. (28)

For the particular case u0(X) = cos(2πX), it can be shown (see, e.g., (Ref. [20], p. 3)) that under
System (27)

T∗B = −2δ−1 ln
(

1− α∗

2π

)
. (29)

If T∗B ∈ R+, then T∗B is the time at which the solution of the Cauchy problem involving
Equation (26) suffers (finite-time) gradient catastrophe ([22], p. 36), where it is expected that α∗ < 2π

( =⇒ T∗B ∈ R+) in all cases of practical interest.

4.4. Numerical Results

Inspired by, and closely following, Zabusky and Kruskal’s [14] analysis of the classic KdV equation,
in this subsection we perform numerical experiments on Equation (9), and its special cases listed above
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as Cases (I) and (II), in the setting of the following initial-boundary value problem (IBVP) with periodic
boundary conditions:

uT + εβuuX + 1
2 a2

0uXXX + 1
2 δu = 1

2 σuXX , |X| < 1, T > 0, (30a)

u(−1, T) = u(1, T), T > 0, (30b)

u(X, 0) = cos(2πX), |X| < 1. (30c)

In (Ref. [14], Figure 1), snapshots of the evolution of the KdV’s solution profile were displayed in
units of (dimensionless) time TB, where Zabusky and Kruskal used TB to denote the “breakdown time”
(i.e., the time at which finite-time gradient catastrophe occurs) of the solution to the Cauchy problem
involving the classic (i.e., undamped) Riemann equation. In our analysis of IBVP (30), T∗B shall play
the role of TB.

The graphs presented in Figures 1–3 were computed and plotted using MATHEMATICA (ver. 11.2).
Except for the value of β(= 1.2), which corresponds to diatomic gases (e.g., air) [9], all other parameter
values were selected based on our desire to produce clear, illustrative, graphs and the need to satisfy
the assumptions under which Equation (9) was derived.

From Figure 1 it is easy to see that, except for attenuation of the profile (caused by the Darcy term)
and a slight phase shift, the dKdV profiles are qualitatively similar to those of the classic KdV equation
in the setting of IBVP (30). And, as is also true in the case of the latter, reducing (resp. increasing) a0

increases (resp. decreases) the number of pulses seen in Figure 1b.
In contrast, the plots shown in Figures 2 and 3 highlight the fact that, like that of the damped

Burgers equation, the dBKdV profile suffers attenuation, again due to the Darcy term, and it also
develops a “dull sawtooth” appearance as it shocks-up (to the right), but never breaks since σ > 0.
More interesting, however, is the fact that for large-T, both the damped Burgers equation and dBKdV
profiles are seen to re-assume the periodic form of the IC. As Figures 2c and 3c illustrate, both profiles
evolve to become damped, and in the dBKdV case slightly phase-shifted (to the left), versions of the
IC given in Equation (30c). This suggests that for sufficiently large values of T, one may employ the
approximations u(X, T) ≈ u1,2(X, T), where

u1,2(X, T) :=

{
exp[−\1(T)] cos[2πX + ψ1(T)], dBKdV equation

exp[−\2(T)] cos[2πX + ψ2(T)], damped Burgers’ equation
(T � T∗B), (31)

and where we require \1,2(T) > 0. Comparing the blue-broken curve in Figure 2c with its counterpart
in Figure 3c we see that \2(20T∗B) > \1(20T∗B) > 0 while ψ1(20T∗B) > ψ2(20T∗B) := 0; here, for
simplicity, we have assumed \1,2(T) and ψ1,2(T) to be linear functions of T. In the setting of IBVP (30),
then, the presence of the third order (i.e., RRG) term in the dBKdV equation gives rise to both a phase
shift and slightly less attenuation vis-à-vis the damped Burgers equation.

While their usefulness may be limited to certain “windows” of T-values, the functions \1,2(T) and
ψ1,2(T) should be constructible based on Equation (31) and numerically generated, large-T, data sets
using one of the many data-fitting methodologies found in the literature.
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Figure 1. The dKdV case of IBVP (30). (a–c) correspond to T = T∗B , 3.6T∗B , and 20T∗B , respectively, where
T∗B ≈ 1.382. Red curves: u vs. X for a0 = (0.005)

√
2, σ = 0, εβ = 0.12, δ = 0.12, and α? = 0.5. Blue

curves: IC given in Equation (30c).
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Figure 2. The dBKdV case of IBVP (30). (a–c) correspond to T = T∗B , 3.6T∗B , and 20T∗B , respectively,
where T∗B ≈ 1.382. Purple curves: u vs. X for a0 = (0.005)

√
2, σ = 0.005, εβ = 0.12, δ = 0.12, and

α? = 0.5. Blue curves (solid): IC given in Equation (30c). Blue-broken curve: u1(X, 20T∗B) vs. X (see
Equation (31)), where we have set \1(20T∗B) := (29.9)δT∗B and ψ1(20T∗B) := (0.1013)T∗B based on a series
of trial-and-error “visual fits”.
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Figure 3. The damped Burgers equation case of IBVP (30). (a–c) correspond to T = T∗B , 3.6T∗B , and
20T∗B , respectively, where T∗B ≈ 1.382. Green curves: u vs. X for a0 := 0, σ = 0.005, εβ = 0.12, δ = 0.12,
and α? = 0.5. Blue curves (solid): IC given in Equation (30c). Blue-broken curve: u2(X, 20T∗B) vs. X
(see Equation (31)), where we have set \2(20T∗B) := (29.946)δT∗B and ψ2(20T∗B) := 0 based on a series
of trial-and-error “visual fits”.



Water 2020, 12, 807 11 of 14

5. The RRG Case with “Artificial” µ

In 1950, von Neumann and Richtmyer (vNR) [23] introduced their artificial viscosity coefficient.
In this section, we make use of this celebrated artifice not to regularize numerical schemes used to
calculate shock profiles, as was vNR’s aim, but rather to obtain an analytical solution to the poroacoustic
version of the piston problem (Unlike Ref. [23], wherein Lagrangian coordinates were used, in this
communication we employ the Eulerian description; see, e.g., (Ref. [24], §V-D-1) wherein vNR’s system
is recast under the latter.).

To this end, we return to the RRG case of System (3) and assume that

µ ∝ α2$|ux|, (32)

but continue to regard µ̃ as a positive constant. Here, we have expressed the length-scale factor in
vNR’s artificial viscosity coefficient as α, instead of some grid spacing ∆x.

For simplicity, we now assume that the porous solid in question is comprised of packed beds
of rigid solid spheres, all of radius r(> 0), which are fixed in place. For such a configuration,
the permeability is given by the well known Kozeny–Carmen relation [4]:

K =
r2χ3

45(1− χ)2 . (33)

As these spheres are scatters of acoustic waves, we take α to be proportional to the characteristic
length now associated with our dual-phase medium; i.e., we take α = b1r, where b1(> 0) is an
“adjustable” (dimensionless) constant ([24], p. 233).

If, moreover, we limit our focus to kink-type waveforms, as physical intuition suggests, and have the
piston located at x = −∞ and moving to the right along the x-axis, then ux < 0 and Equation (32) becomes

µ = −b2
1r2$φxx, (34)

where we have used the relation u = φx. Returning to our dimensionless variables, and once
again applying the finite-amplitude approximation, it is readily established that, under the
aforementioned assumptions, the following (simpler) weakly-nonlinear PDE replaces Equation (5) as
our bi-directional EoM:

φtt − [1− 2ε(β− 1)φt]φxx + ε(1− δ1)∂t(φx)
2 = σφtxx + a2

1φttxx (artificial µ). (35)

In Equation (35), which we observe applies only to the RRG case, we have set a1 := b1r
√

2/L,
where we require that a1 ∼ O(ε), and

δ1 :=
εb2

145(1− χ)2

χ2 (0 < δ1 < 1), (36)

where the requirement δ1 ∈ (0, 1) implies that b1 must satisfy the inequality

0 < b1 <
1

3
√

5ε

(
χ

1− χ

)
. (37)

Assuming the gas at x = +∞ is in its equilibrium state, and thus motionless, and observing that in
the present context Up is the dimensional speed of the piston, we let φ(x, t) = G(η), where η = x− v1t
and the (dimensionless) shock speed v1 is taken to be a positive constant, and then substitute into
Equation (35). On integrating once with respect to η and then imposing/enforcing the asymptotic
conditions g→ 1, 0 as η → ∓∞, respectively, Equation (35) is reduced to the ODE

a2
1v1g′′ − σg′ − εβ1g(1− g) = 0, (38)
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where we note that the resulting constant of integration is zero. In Equation (38), g(η) = G′(η), where
a prime denotes d/dη; we have defined

β1 := β− δ1, (39)

recalling that β is the coefficient of nonlinearity (see Equation (6)); and

v1 = 1
2 εβ1 +

√
1 + 1

4 ε2β2
1 (v1 > 1), (40)

which we observe is the positive root of

v2
1 − εβ1v1 − 1 = 0. (41)

To apply the solution methodology employed in (Ref. [2], §2) to Equation (38), the following
condition must be satisfied:

25a2
1(v

2
1 − 1) = 6σ2. (42)

In (Ref. [2], §2), satisfying Equation (42) required that the value of the Mach number be fixed,
a constraint which clearly limits the usefulness of the TWSs presented in that article. Here, however,
we shall use this restriction to our advantage; specifically, in the following sense: Since the value of µ̃

for a given poroacoustic flow is, in general, not known, and we are seeking a kink-type TWS, then the
only possible solution of Equation (42) in the present context is

σ = 5a1

√
v2

1 − 1
6

=⇒ µ̃ =
5$0b1r

χ

√
v2

1 − c2
0

3
, (43)

where we observe that v1 = v1c0 is the dimensional shock speed and, moreover, that v1 > 1 implies
v1 > c0.

On imposing the usual wave front condition g(0) = 1/2, but otherwise referring the reader to
(Ref. [2], §2) for details regarding its derivation, the TWS we seek is

g(η) =
1
4

sech2
(

27η

16λ1
+K

)
+

1
2

[
1− tanh

(
27η

16λ1
+K

)]
, (44)

where K = tanh−1
(
−1 +

√
2
)

. Letting λ1 = `1/L denote the dimensionless shock thickness (Recall
Equation (2)) admitted by Equation (44), it is easily established that

λ1 =
135a2

1v1

8σ
=

81a1v1

4
√

6(v2
1 − 1)

=⇒ `1 =
81v1b1r

4
√

3(v2
1 − c2

0)
, (45)

where `1 is the corresponding dimensional shock thickness. Also, with regard to computing λ1, it should
be noted that g′′(η∗) = 0, where η∗(< 0) is given by

η∗ =
10a2

1v1

[
tanh−1(1/3)−K

]
σ

, (46)

and where it should also be noted that g(η∗) = 5/9.
The usefulness of Equation (45) might be ascertained as follows. Assume that v1 and `1 can both

be determined, either directly or indirectly, from experimental measurements and, moreover, that
both are (at most) slowly varying functions of time. With v1 known, b1 can, of course, be computed
using Equations (36), (39) and (40). If this (inferred) value of b1 satisfies the inequality in Equation (37),
a1 ∼ O(ε) is also satisfied, and the measured value of `1 is in agreement with that computed from
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Equation (45) over, say, some span of time t ∈ T , then we can expect Equation (45) to prove useful as
an approximation within the transition region of our kink-type traveling wave profile for t ∈ T .

6. Discussion: Possible Follow-On Studies

In addition to gaining a better understanding of how the solution of IBVP (30) behaves for
large-T, in particular, determining to what extent (if any) the recurrence behavior seen in Figures 2c
and 3c is related to the functional form of a given IC, future work on poroacoustic RRG theory could
included the use of homogenization methods in problems wherein K and/or χ vary with position.
Other possible extensions include the poroacoustic generalization of the study carried out in Ref. [25],
wherein α was taken to be a function of (ux)2, and also the case in which µ̃ is a power-law function of
the shear rate tensor. Follow-on work might also include the study of poroacoustic signaling problems
involving sinusoidal and/or shock input signals, as well as problems in which changes in entropy and
temperature are taken into account.
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Appendix A. Corrections to Ref. [13]

As kindly confirmed by Prof. Leibovich [26], Equations (4b), (4d), and (13), and the caption
of FIG. 2, in Ref. [13] contain typographical errors; the required corrections, also provided by
Prof. Leibovich [26], read as follow:

• In Equation (4b), replace a1 with a0.
• In Equation (4d), replace the exponent 3/2 with −3/2.
• In Equation (13), delete the factor ν.
• In the caption of FIG. 2, replace (16) with (15).
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