Network Modeling and Dynamic Mechanisms of Multi-Hazards—A Case Study of Typhoon Mangkhut
Abstract
:1. Introduction
2. Materials and Methods
2.1. Super Typhoon Mangkhut
2.2. Study Areas
2.3. Dataset
2.4. Methodology
2.4.1. Rules to Establish the Bipartite Network
2.4.2. Adjacent Matrix of Disaster Network
3. Results
3.1. Analysis of Network Structure
3.1.1. Small World Nature
3.1.2. Centrality Measures
3.1.3. Core–Periphery Analysis
3.2. Comparison between Multi-Hazards Assessment and Disaster Damage
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kelman, I. Climate Change and the Sendai Framework for Disaster Risk Reduction. Int. J. Disaster Risk Sci. 2015, 6, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Pelling, M.; Maskrey, A.; Ruiz, P.; Hall, P.; Peduzzi, P.; Dao, Q.-H.; Mouton, F.; Herold, C.; Kluser, S. Reducing Disaster Risk: A Challenge for Development; John S. Swift Co.: New York, NY, USA, 2004; Available online: http://archive-ouverte.unign.ch/unige:77865 (accessed on 18 January 2004).
- WEF. The Global Risk Report 2019 Retrieved from Geneva. Available online: http://www3.weforum.org/docs/WEF_Global_Risks_Report_2019.pdf (accessed on 15 January 2019).
- Fang, J.; Liu, W.; Yang, S.; Brown, S.; Nicholls, R.J.; Hinkel, J.; Shi, X.; Shi, P. Spatial-temporal changes of coastal and marine disasters risks and impacts in Mainland China. Ocean Coast. Manag. 2017, 139, 125–140. [Google Scholar] [CrossRef]
- Shi, P. Natural disasters in China. IHDP/Future Earth-Integrated Risk Governance Project Series; Springer: Berlin/Heidelberg, Germany, 2016; pp. 26–30. [Google Scholar]
- Webster, P.J.; Holland, G.J.; Curry, J.A.; Chang, H.-R. Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment. Science 2005, 309, 1844–1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z.N.; Barabási, A.-L. The large-scale organization of metabolic networks. Nature 2002, 407, 651–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aryal, Y.N.; Villarini, G.; Zhang, W.; Vecchi, G.A. Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic Oscillation and El Niño-Southern Oscillation. J. Hydrol. 2018, 559, 698–710. [Google Scholar] [CrossRef]
- Wahl, T.; Jain, S.; Bender, J.; Meyers, S.D.; Luther, M.E. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Clim. Chang. 2015, 5, 1093–1097. [Google Scholar] [CrossRef]
- Leonard, M.; Westra, S.; Phatak, A.; Lambert, M.; van den Hurk, B.; McInnes, K.; Risbey, J.; Schuster, S.; Jakob, D.; Stafford-Smith, M. A compound event framework for understanding extreme impacts. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 113–128. [Google Scholar] [CrossRef]
- Chen, W.; Lu, Y.; Sun, S.; Duan, Y.; Leckebusch, G.C. Hazard Footprint-Based Normalization of Economic Losses from Tropical Cyclones in China During 1983–2015. Int. J. Disaster Risk Sci. 2018, 9, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Fischer, T.; Su, B.; Wen, S. Spatio-Temporal Analysis of Economic Losses from Tropical Cyclones in Affected Provinces of China for the Last 30 Years (1984–2013). Nat. Hazards Rev. 2015, 16, 04015010. [Google Scholar] [CrossRef]
- Hoque, M.A.-A.; Phinn, S.; Roelfsema, C.; Childs, I. Assessing tropical cyclone risks using geospatial techniques. Appl. Geogr. 2018, 98, 22–33. [Google Scholar] [CrossRef]
- Adger, W.N.; Hughes, T.P.; Folke, C.; Carpenter, S.R.; Rockström, J. Social-ecological resilience to coastal disasters. Science 2005, 309, 1036–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, J.D.; Irish, J.L.; Camargo, S.J. Coastal flooding by tropical cyclones and sea-level rise. Nature 2013, 504, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Qi, P.; Du, M. Multi-factor evaluation indicator method for the risk assessment of atmospheric and oceanic hazard group due to the attack of tropical cyclones. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 1–7. [Google Scholar] [CrossRef]
- Ferrario, F.; Beck, M.W.; Storlazzi, C.D.; Micheli, F.; Shepard, C.C.; Airoldi, L. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Wong, M.H. Current status of coastal zone issues and management in China: A review. Environ. Int. 2007, 33, 985–992. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Shi, C.; Yan, J. Research of the Natural Disaster Risk on Coastal Cities. Acta Geogr. Sin. 2006, 61, 127–138. [Google Scholar]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in a peri-urbancatchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Zhang, K.; Xiao, C.; Shen, J. Comparison of the CEST and SLOSH Models for Storm Surge Flooding. J. Coast. Res. 2008, 24, 489–499. [Google Scholar] [CrossRef]
- Lin, N.; Kopp, R.E.; Horton, B.P.; Donnelly, J.P. Hurricane Sandy’s flood frequency increasing from year 1800 to 2100. Proc. Natl. Acad. Sci. USA 2016, 113, 12071–12075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Y.; Fang, W. Estimation of the compound hazard severity of tropical cyclones over coastal China during 1949–2011 with copula function. Nat. Hazards 2018, 93, 887–903. [Google Scholar] [CrossRef]
- Gettelman, A.; Bresch, D.N.; Chen, C.C.; Truesdale, J.E.; Bacmeister, J.T. Projections of future tropical cyclone damage with a high-resolution global climate model. Clim. Chang. 2018, 146, 575–585. [Google Scholar] [CrossRef]
- Tsuboki, K.; Yoshioka, M.K.; Shinoda, T.; Kato, M.; Kanada, S.; Kitoh, A. Future increase of supertyphoon intensity associated with climate change. Geophys. Res. Lett. 2015, 42, 646–652. [Google Scholar] [CrossRef]
- Landsea, C.W.; Harper, B.A.; Hoarau, K.; Knaff, J.A. Can We Detect Trends in Extreme Tropical Cyclones? Science 2006, 313, 452–454. [Google Scholar] [CrossRef] [Green Version]
- Brun, J.; Barros, A.P. Mapping the role of tropical cyclones on the hydroclimate of the southeast United States: 2002–2011. Int. J. Climatol. 2014, 34, 494–517. [Google Scholar] [CrossRef]
- Chen, F.; Fu, Y. Contribution of tropical cyclone rainfall at categories to total precipitation over the Western North Pacific from 1998 to 2007. Sci. China Earth Sci. 2015, 58, 2015–2025. [Google Scholar] [CrossRef]
- Czajkowski, J.; Villarini, G.; Montgomery, M.; Michel-Kerjan, E.; Goska, R. Assessing Current and Future Freshwater Flood Risk from North Atlantic Tropical Cyclones via Insurance Claims. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Lai, Y.; Gu, X.; Shi, P.; Singh, V.P. Tropical Cyclonic Rainfall in China: Changing Properties, Seasonality, and Causes. J. Geophys. Res. Atmos. 2018, 123, 4476–4489. [Google Scholar] [CrossRef]
- Kappes, M.S.; Keiler, M.; von Elverfeldt, K.; Glade, T. Challenges of analyzing multi-hazard risk: A review. Nat. Hazards 2012, 64, 1925–1958. [Google Scholar] [CrossRef] [Green Version]
- Asprone, D.; Jalayer, F.; Prota, A.; Manfredi, G. Proposal of a probabilistic model for multi-hazard risk assessment of structures in seismic zones subjected to blast for the limit state of collapse. Struct. Saf. 2010, 32, 25–34. [Google Scholar] [CrossRef]
- Boers, N.; Goswami, B.; Rheinwalt, A.; Bookhagen, B.; Hoskins, B.; Kurths, J. Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature 2019, 566, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.C.; Malamud, B.D. Reviewing and visualizing the interactions of natural hazards. Rev. Geophys. 2014, 52, 680–722. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Liu, X.; Xie, W.; Wu, J.; Zhang, P. The Return Period Analysis of Natural Disasters with Statistical Modeling of Bivariate Joint Probability Distribution. Risk Anal. 2013, 33, 134–145. [Google Scholar] [CrossRef]
- Lozoya, J.P.; Sardá, R.; Jiménez, J.A. A methodological framework for multi-hazard risk assessment in beaches. Environ. Sci. Policy 2011, 14, 685–696. [Google Scholar] [CrossRef]
- Chorozoglou, D.; Kugiumtzis, D.; Papadimitriou, E. Application of complex network theory to the recent foreshock sequences of Methoni (2008) and Kefalonia (2014) in Greece. Acta Geophys. 2017, 65, 543–553. [Google Scholar] [CrossRef]
- Daskalaki, E.; Spiliotis, K.; Siettos, C.; Minadakis, G.; Papadopoulos, G.A. Foreshocks and short-term hazard assessment of large earthquakes using complex networks: The case of the 2009 L’Aquila earthquake. Nonlinear Process. Geophys. 2016, 23, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Evaggelidis, I.N.; Siettos, C.I.; Russo, P.; Russo, L. Complex network theory criterion to distribute fuel breaks for the hazard control of fire spread in forests. AIP Conf. Proc. 2015, 1648, 100005. [Google Scholar]
- Konapala, G.; Mishra, A. Review of complex networks application in hydroclimatic extremes with an implementation to characterize spatio-temporal drought propagation in continental USA. J. Hydrol. 2017, 555, 600–620. [Google Scholar] [CrossRef]
- Xu, X.; Wang, C.; Cai, C.; Xue, M. Evolution and coping research for flood disaster social stability risk based on the complex network. Nat. Hazards 2015, 77, 1491–1500. [Google Scholar] [CrossRef]
- Chan, E.Y.Y.; Man, A.Y.T.; Lam, H.C.Y.; Chan, G.K.W.; Hall, B.J.; Hung, K.K.C. Is urban household emergency preparedness associated with short-term impact reduction after a super typhoon in subtropical city? Int. J. Environ. Res. Public Health 2019, 16, 596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boykoff, M.; Katzung, J.; Nacu-Schmidt, A. Media and Climate Change Observatory Monthly Summary—Issue 21. September 2018. Available online: https://sciencepolicy.colorado.edu/icecaps/research/media_coverage/summaries/issue21.html (accessed on 1 October 2018).
- Choy, C.; Wu, M. A Wake up Call from Mangkhut. Available online: https://www.hko.gov.hk/en/blog/00000216.htm (accessed on 29 October 2018).
- Schembri, F. Deadly storms break records, damage facilities. Science 2018, 361, 1172–1173. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.; Ushio, T.; Nakagawa, K. Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Shige, S.; Watanabe, T.; Sasaki, H.; Kubota, T.; Kida, S.; Okamoto, K. Validation of western and eastern Pacific rainfall estimates from the TRMM PR using a radiative transfer model. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Erdős, P.; Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 1960, 5, 17–60. [Google Scholar]
- Watts, D.J. The “new” science of networks. Annu. Rev. Sociol. 2004, 30, 243–270. [Google Scholar] [CrossRef] [Green Version]
- Albert, R.; Jeong, H.; Barabási, A.-L. Internet: Diameter of the world-wide web. Nature 1999, 401, 130–131. [Google Scholar] [CrossRef] [Green Version]
- Liljeros, F.; Edling, C.R.; Amaral, L.A.N.; Stanley, H.E.; Åberg, Y. The web of human sexual contacts. Nature 2001, 411, 907–908. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.J.; Berlow, E.L.; Dunne, J.A.; Barabási, A.-L.; Martinez, N.D. Two degrees of separation in complex food webs. Proc. Natl. Acad. Sci. USA 2002, 99, 12913–12916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47. [Google Scholar] [CrossRef] [Green Version]
- Latapy, M.; Magnien, C.; Vecchio, N.D. Basic notions for the analysis of large two-mode networks. Soc. Netw. 2008, 30, 31–48. [Google Scholar] [CrossRef]
- Scott, J.; Carrington, P.J. The SAGE Handbook of Social Network Analysis; SAGE Publications Inc.: London, UK, 2011. [Google Scholar]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
Time Dimension | Spatial Dimension | |||
---|---|---|---|---|
Clustering Coefficient (C) | Average Path Length (L) | Clustering Coefficient (C) | Average Path Length (L) | |
Disaster Network | 3.93 | 1.3 | 3.73 | 1.4 |
Random Network | 2.38 | 1.1 | 2.10 | 1.1 |
Affected Population (Person) | Percentage of the Affected Population in Permanent Residents | Affected Farmland (km2) | Affected Building (House) | Direct Economic Loss (Billion USD) | Percentage of Loss in GDP | |
---|---|---|---|---|---|---|
Core | 2,539,756 | 69.68% | 2043.45 | 7410 | 1.2911 | 0.22% |
Periphery | 1,918,003 | 55.58% | 1238.22 | 3855 | 0.6107 | 0.06% |
Total | 4,457,759 | / | 3281.67 | 11,265 | 1.9018 | / |
Value of Path Length | Time Dimension | Spatial Dimension | ||
---|---|---|---|---|
Frequency | Probability | Frequency | Probability | |
1 | 634 | 63.9% | 722 | 60.7% |
2 | 296 | 29.8% | 452 | 38% |
Other | 62 | 6.3% | 16 | 1.3% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Fang, J.; Chen, R.; Xia, Z.; Xu, H. Network Modeling and Dynamic Mechanisms of Multi-Hazards—A Case Study of Typhoon Mangkhut. Water 2020, 12, 2198. https://doi.org/10.3390/w12082198
Niu Y, Fang J, Chen R, Xia Z, Xu H. Network Modeling and Dynamic Mechanisms of Multi-Hazards—A Case Study of Typhoon Mangkhut. Water. 2020; 12(8):2198. https://doi.org/10.3390/w12082198
Chicago/Turabian StyleNiu, Yilong, Jiayi Fang, Ruishan Chen, Zilong Xia, and Hanqing Xu. 2020. "Network Modeling and Dynamic Mechanisms of Multi-Hazards—A Case Study of Typhoon Mangkhut" Water 12, no. 8: 2198. https://doi.org/10.3390/w12082198
APA StyleNiu, Y., Fang, J., Chen, R., Xia, Z., & Xu, H. (2020). Network Modeling and Dynamic Mechanisms of Multi-Hazards—A Case Study of Typhoon Mangkhut. Water, 12(8), 2198. https://doi.org/10.3390/w12082198