Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Boston fern

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3518 KiB  
Article
Air Cleaning Performance of Two Species of Potted Plants and Different Substrates
by Tatiana Armijos-Moya, Pieter de Visser, Marc Ottelé, Andy van den Dobbelsteen and Philomena M. Bluyssen
Appl. Sci. 2022, 12(1), 284; https://doi.org/10.3390/app12010284 - 28 Dec 2021
Cited by 14 | Viewed by 8575
Abstract
Potted plants have been reported to uptake VOCs and help “cleaning” the air. This paper presents the results of a laboratory study in which two species of plants (peace lily and Boston fern) and three kinds of substrates (expanded clay, soil, and activated [...] Read more.
Potted plants have been reported to uptake VOCs and help “cleaning” the air. This paper presents the results of a laboratory study in which two species of plants (peace lily and Boston fern) and three kinds of substrates (expanded clay, soil, and activated carbon) were tested and monitored on their capacity to deplete formaldehyde and CO2 in a glass chamber. Formaldehyde and CO2 were selected as indicators to evaluate the biofiltration efficacy of 28 different test conditions; relative humidity (RH) and temperature (T) were monitored during the experiments. To evaluate the efficacy of every test, the clean air delivery rate (CADR) was calculated. Overall, soil had the best performance in removing formaldehyde (~0.07–0.16 m3/h), while plants, in particular, were more effective in reducing CO2 concentrations (peace lily 0.01m3/h) (Boston fern 0.02–0.03 m3/h). On average, plants (~0.03 m3/h) were as effective as dry expanded clay (0.02–0.04 m3/h) in depleting formaldehyde from the chamber. Regarding air-cleaning performance, Boston ferns presented the best performance among the plant species, and the best performing substrate was the soil. Full article
(This article belongs to the Special Issue Green Technologies for a Cleaner Environment)
Show Figures

Figure 1

28 pages, 59573 KiB  
Article
Health-Related Benefits of Different Indoor Plant Species in a School Setting
by Alexander Pichlhöfer, Eldira Sesto, Jutta Hollands and Azra Korjenic
Sustainability 2021, 13(17), 9566; https://doi.org/10.3390/su13179566 - 25 Aug 2021
Cited by 17 | Viewed by 6676
Abstract
Humans spend more than 80% of their lives indoors resulting in an increased demand for high indoor air quality (IAQ). At the same time, indoor air tends to be at least twice as polluted as outdoor air, and health threats caused by long-term [...] Read more.
Humans spend more than 80% of their lives indoors resulting in an increased demand for high indoor air quality (IAQ). At the same time, indoor air tends to be at least twice as polluted as outdoor air, and health threats caused by long-term exposure to indoor air pollution are rising. Few experiments under real-life conditions have demonstrated positive effects of indoor plants on parameters related to IAQ, resulting in improved humidity and temperature, reduced particulate matter concentration and CO2 levels. Indoor living walls allow the presence of many plants—without taking up valuable floor area. This article presents the results of conducted measurements on four do-it-yourself green walls planted with different plant species that are typically used for vertical indoor greenery (golden pothos, Boston fern, spider plant and a combination of plants) in a school setting. Besides the parameters of air humidity and temperature, CO2, mold spore and particulate matter levels, influences on room acoustics were investigated. Based on a custom-developed evaluation matrix, the plants were compared with each other and a reference without plants. The results show that no species led to deterioration of IAQ. Golden pothos had the most substantial effect and delivered improvements in all examined parameters. Full article
(This article belongs to the Collection Urban Green Infrastructure for Climate-Proof and Healthy Cities)
Show Figures

Figure 1

10 pages, 1714 KiB  
Article
Daily Water Requirement of Container Grown Davallia bullata and Nephrolepis exaltata and Implication in Irrigation Practices
by Richard C. Beeson, Roger Kjelgren and Jianjun Chen
Water 2020, 12(8), 2190; https://doi.org/10.3390/w12082190 - 4 Aug 2020
Cited by 3 | Viewed by 2874
Abstract
Container crop production has become increasingly popular, but daily water requirements of those crops from transplanting to marketable or harvestable stages are largely unavailable. To address this concern, daily water consumption of two container-grown fern species, Davallia bullata and Nephrolepis exaltata from initial [...] Read more.
Container crop production has become increasingly popular, but daily water requirements of those crops from transplanting to marketable or harvestable stages are largely unavailable. To address this concern, daily water consumption of two container-grown fern species, Davallia bullata and Nephrolepis exaltata from initial transplanting to marketable size were studied using a canopy closure model. Daily actual evapotranspiration (ETA) of D. bullata ranged from 4.6 mL to 76.5 mL with an average of 29.0 mL per plant per day. The mean cumulative ETA was 13.2 L during 431 days of production spanning from 8 November 2006 to 4 February 2008. Two crops of N. exaltata were produced. Daily ETA per N. exaltata plant produced in crop 1 varied from 19.0 to 241.2 mL with an average of 69.5 mL, and daily ETA of crop 2 differed from 5.7 to 136.8 mL with a mean of 74.0 mL. Both crops had a cumulative ETA of 9.4 L. Such differences in daily ETA and cumulative ETA between the two fern species raised further concern of irrigation practices in commercial foliage plant production as multiple species are commonly produced in one greenhouse and share the same irrigation schedule. Comparing daily ETA and cumulative ETA values of the ferns with the other studied foliage plants indicated that daily ETA and cumulative ETA are species specific. Therefore, to improve irrigation efficiency, daily ETA and cumulative ETA values of major container-grown plants should be established. Implementing the research-based daily ETA and cumulative ETA in container plant production should reduce irrigation water leaching and runoff and conserving freshwater resources. Full article
(This article belongs to the Special Issue Irrigation Management)
Show Figures

Figure 1

Back to TopTop