Experimental Study on the Retention and Interception Effect of an Extensive Green Roof (GR) with a Substrate Layer Modified with Kaolin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Construction
2.2. Experimental Design
2.3. Evaluation Methods
2.3.1. Evaluation Method of Retention Capacity
2.3.2. Evaluation Method of Interception Capacity
3. Results and Discussion
3.1. Retention Capacity
3.2. Interception Capacity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thuring, C.E.; Dunnett, N. Persistence, loss and gain: Characterising mature green roof vegetation by functional composition. Landsc. Urban Plan. 2019, 185, 228–236. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Reddy, D.H.K.; Yun, Y. Improving the quality of runoff from green roofs through synergistic biosorption and phytoremediation techniques: A review. Sustain. Cities Soc. 2019, 46, 101381. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, Y.; Hu, S.; Hu, D.; Neto, S.; Zhang, Y. Assessing the hydrological behaviour of large-scale potential green roofs retrofitting scenarios in Beijing. Urban For. Urban Green. 2017, 40, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Abualfaraj, N.; Cataldo, J.; Elborolosy, Y.; Fagan, D.; Woerdeman, S.; Carson, T.; Montalto, F.A. Monitoring and Modeling the Long-Term Rainfall-Runoff Response of the Jacob K. Javits Center Green Roof. Water 2018, 10, 1494. [Google Scholar] [CrossRef] [Green Version]
- Mora-Melià, D.; López-Aburto, C.S.; Ballesteros-Pérez, P.; Muñoz-Velasco, P. Viability of green roofs as a flood mitigation element in the central region of Chile. Sustainability 2018, 10, 1130. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.; Kim, R.; Kyungho, K. Green Roof for Stormwater Management in a Highly Urbanized Area: The Case of Seoul, Korea. Sustainability 2018, 10, 584. [Google Scholar]
- Gao, Y.; Wang, D.; Schmidt, A.; Tang, Y. Analysis of effect of green roof on urban runoff. Water Resour. Prot. 2018, 34, 20–26. [Google Scholar]
- Todorov, D.; Driscoll, C.T.; Todorova, S.; Montesdeoca, M. Water quality function of an extensive vegetated roof. Sci. Total Environ. 2018, 625, 928–939. [Google Scholar] [CrossRef]
- Lopez-Uceda, A.; Galvín, A.P.; Ayuso, J.; Jiménez, J.R.; Vanwalleghem, T.; Peña, A. Risk assessment by percolation leaching tests of extensive green roofs with fine fraction of mixed recycled aggregates from construction and demolition waste. Environ. Sci. Pollut. Res. 2018, 25, 36024–36034. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Chen, W.; Wei, W.; Deo, R.C. The influence of structural factors on stormwater runoff retention of extensive green roofs: New evidence from scale-based models and real experiments. J. Hydrol. 2019, 569, 230–238. [Google Scholar] [CrossRef]
- Pęczkowski, G.; Kowalczyk, T.; Szawernoga, K.; Orzepowski, W.; Żmuda, R.; Pokładek, R. Hydrological Performance and Runoff Water Quality of Experimental Green Roofs. Water 2018, 10, 1185. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Yin, D.; Li, J.; Zhang, X.; Wang, W.; Fang, X.; Shi, H.; Wang, Q. Performance assessment of extensive green roof runoff flow and quality control capacity based on pilot experiments. Sci. Total Environ. 2019, 687, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Cascone, S.; Gagliano, A.; Poli, T.; Sciuto, G. Thermal performance assessment of extensive green roofs investigating realistic vegetation-substrate configurations. Build. Simul. 2019, 12, 379–393. [Google Scholar] [CrossRef]
- Kemp, S.; Hadley, P.; Blanusa, T. The influence of plant type on green roof rainfall retention. Urban Ecosyst. 2019, 22, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Azeñas, V.; Janner, I.; Medrano, H.; Gulías, J. Performance evaluation of five Mediterranean species to optimize ecosystem services of green roofs under water-limited conditions. J. Environ. Manag. 2018, 212, 236–247. [Google Scholar] [CrossRef]
- Todorov, D.; Driscoll, C.T.; Todorova, S. Long-term and seasonal hydrologic performance of an extensive green roof. Hydrol. Process. 2018, 32, 2471–2482. [Google Scholar] [CrossRef]
- Gong, Y.; Yin, D.; Fang, X.; Li, J. Factors Affecting Runoff Retention Performance of Extensive Green Roofs. Water 2018, 10, 1217. [Google Scholar] [CrossRef] [Green Version]
- Ladani, H.J.; Park, J.-R.; Jang, Y.-S.; Shin, H. Hydrological Performance Assessment for Green Roof with Various Substrate Depths and Compositions. Ksce J. Civ. Eng. 2019, 23, 1860–1871. [Google Scholar] [CrossRef]
- Wang, X.; Tian, Y.; Zhao, X. The influence of dual-substrate-layer extensive green roofs on rainwater runoff quantity and quality. Sci. Total Environ. 2017, 592, 465–476. [Google Scholar] [CrossRef]
- Xu, H.; Lu, W. Research progress on the detention and purification of urban rainfall runoff by green roof. Pearl River 2018, 39, 134–138. [Google Scholar]
- Sepaskhah, A.R.; Shahabizad, V. Effects of water quality and PAM application rate on the control of soil erosion, water infiltration and runoff for different soil textures measured in a rainfall simulator. Biosyst. Eng. 2010, 106, 513–520. [Google Scholar] [CrossRef]
- Ma, R.; Cai, C.; Li, Z.; Wang, J.; Xiao, T.; Peng, G.; Yang, W. Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography. Soil Tillage Res. 2015, 149, 1–11. [Google Scholar] [CrossRef]
- Wu, S.; Wu, P.; Feng, H.; Bu, C. Influence of amendments on soil structure and soil loss under simulated rainfall China’s loess plateau. Afr. J. Biotechnol. 2010, 9, 6116–6121. [Google Scholar]
- Zhang, Q.; Liping, M.; Huiwei, W.; Long, W. Analysis of the effect of green roof substrate amended with biochar on water quality and quantity of rainfall runoff. Environ. Monit. Assess. 2019, 191, 304. [Google Scholar]
- Li, X.; Cao, J.; Xu, P.; Fei, L.; Dong, Q.; Wang, Z. Green roofs: Effects of plant species used on runoff. Land Degrad. Dev. 2018, 29, 3628–3638. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Fascella, G.; Licata, M.; Schicchi, R.; Gennaro, M.C.; La Bella, S.; Leto, C.; Aprile, S. Studies on Sedum taxa found in Sicily (Italy) for Mediterranean extensive green roofs. Ital. J. Agron. 2018, 11, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-C.; Peng, Y.-H. Light-Weight Perlite Medium Cultivation of Plants used in Extensive Green Roof Feasibility Studies. In Proceedings of the International Conference on Mechanics, Beijing, China, 14–16 April 2017. [Google Scholar]
- Gong, Y.; Yin, D.; Fang, X.; Zhai, D.; Li, J. Rainwater retention effect of extensive green roofs monitored under natural rainfall events—A case study in Beijing. Hydrol. Res. 2018, 49, 1773–1787. [Google Scholar] [CrossRef]
- Drgoňová, K.; Novotná, B.; Antal, J. The Impact of the Soil Additives Application on the Rainwater Surface Runoff. J. Ecol. Eng. 2016, 17, 22–26. [Google Scholar] [CrossRef]
- Gilkes, R.; Prakongkep, N. How the unique properties of soil kaolin affect the fertility of tropical soils. Appl. Clay Sci. 2016, 131, 100–106. [Google Scholar] [CrossRef]
- Dos Santos, P.L.F.; De Castilho, R.M.M. Floriferous herbaceous and substrates for use on extensive green roofs. Ornam. Hortic. 2018, 24, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhong, X.; Che, W.; Sun, H.; Zhang, H. A laboratory study to determine the use of polluted river sediment as a substrate for extensive green roofs. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2018, 78, 2247–2255. [Google Scholar] [CrossRef] [PubMed]
- Baryła, A.; Karczmarczyk, A.; Bus, A.; Hewelke, E. Influence of environmental factors on retention of extensive green roofs with different substrate composition. In Proceedings of the E3S Web of Conferences, Krakow, Poland, 26–29 June 2019. [Google Scholar]
- Johannessen, B.G.; Muthanna, T.; Braskerud, B.C. Braskerud. Detention and Retention Behavior of Four Extensive Green Roofs in Three Nordic Climate Zones. Water 2018, 10, 671. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.; Sleep, B.; Drake, J.; Fryer, M. The Effect of Intraparticle Porosity and Interparticle Voids on the Hydraulic Properties of Soilless Media. Vadose Zone J. 2019, 18, 1–13. [Google Scholar] [CrossRef]
- De-Ville, S.; Menon, M.; Stovin, V. Temporal variations in the potential hydrological performance of extensive green roof systems. J. Hydrol. 2018, 558, 564–578. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Zhang, Y.; Che, S. Performance analysis and experimental study on rainfall water purification with an extensive green roof matrix layer in Shanghai, China. Water Sci. Technol. 2017, 77, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zhong, X.; Che, W. Nutrient leaching from extensive green roofs with different substrate compositions: A laboratory study. Water Sci. Technol. 2017, 77, 1007–1014. [Google Scholar]
- Zhang, G.; Chan, K.; Oates, A.; Heenan, D.; Huang, G. Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil Tillage Res. 2007, 92, 122–128. [Google Scholar] [CrossRef]
- Mohsenipour, M.; Shahid, S.; Ebrahimi, K. Nitrate Adsorption on Clay Kaolin: Batch Tests. J. Chem. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Soinne, H.; Hovi, J.; Tammeorg, P.; Turtola, E. Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma 2014, 219, 162–167. [Google Scholar] [CrossRef]
Device | Material | Depth | Bulk Density | Character |
---|---|---|---|---|
GR1 | 66% Perlite + 30%Peat + 4% Kaolin | 10 cm | 0.3345 g/cm3 | Modified substrate |
GR2 | 35% Perlite + 30% Peat + 35% Ceramsite | 10 cm | 0.3446 g/cm3 | Commercial substrate |
GR3 | 66% Perlite + 30% Peat + 4% Kaolin | 15 cm | 0.3345 g/cm3 | Modified substrate |
SR | - | - | - | - |
Measurement | NH4+ | NO3− | NO2− | PO43− |
---|---|---|---|---|
Concentration | 1 mg/L | 1.2 mg/L | 0.02 mg/L | 0.01 mg/L |
Measurement | Method |
---|---|
NH4+ | Nessler’s reagent spectrophotometry |
NO3− | Ultraviolet spectrophotometry |
NO2− | Spectrophotometry of naphthalene ethylenediamine hydrochloride |
PO43− | Ammonium molybdate spectrophotometry |
Recurrence Period (a) | Rainfall Depth (mm) | Rainfall (mL) | ADP (h) | Delayed Outflow Time (s) | Outflow Volume (mL) | Retention Rate | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GR1 | GR2 | GR3 | GR1 | GR2 | GR3 | GR1 | GR2 | GR3 | ||||
0.25 | 32.42 | 8105.10 | 70.5 | 1015 | 1995 | 1315 | 6342 | 5689 | 5865 | 21.75% | 29.80% | 27.62% |
0.5 | 43.94 | 10,985 | 74 | 960 | 1465 | 1285 | 8689 | 8029 | 8205 | 20.90% | 26.90% | 25.30% |
1 | 55.46 | 13,864.75 | 65.5 | 730 | 1280 | 985 | 11,176 | 10,371 | 10,536 | 19.40% | 25.20% | 24.00% |
5 | 82.21 | 20,551.75 | 70 | 500 | 915 | 805 | 16,959 | 16,008 | 15,836 | 17.48% | 22.11% | 22.95% |
20 | 105.25 | 26,311.5 | 71 | 422 | 645 | 570 | 23,614 | 22,206 | 22,772 | 10.25% | 15.60% | 13.45% |
100 | 131.99 | 32,998.5 | 68 | 340 | 570 | 435 | 31,449 | 30,132 | 31,213 | 4.70% | 8.69% | 5.41% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Liu, Z.; Cai, G.; Zhan, J. Experimental Study on the Retention and Interception Effect of an Extensive Green Roof (GR) with a Substrate Layer Modified with Kaolin. Water 2020, 12, 2151. https://doi.org/10.3390/w12082151
Xu C, Liu Z, Cai G, Zhan J. Experimental Study on the Retention and Interception Effect of an Extensive Green Roof (GR) with a Substrate Layer Modified with Kaolin. Water. 2020; 12(8):2151. https://doi.org/10.3390/w12082151
Chicago/Turabian StyleXu, Chen, Zaohong Liu, Guanjun Cai, and Jian Zhan. 2020. "Experimental Study on the Retention and Interception Effect of an Extensive Green Roof (GR) with a Substrate Layer Modified with Kaolin" Water 12, no. 8: 2151. https://doi.org/10.3390/w12082151
APA StyleXu, C., Liu, Z., Cai, G., & Zhan, J. (2020). Experimental Study on the Retention and Interception Effect of an Extensive Green Roof (GR) with a Substrate Layer Modified with Kaolin. Water, 12(8), 2151. https://doi.org/10.3390/w12082151