Effects of Water Stress on Photosynthesis, Yield, and Water Use Efficiency in Winter Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Experimental Design and Treatments
2.3. Soil Moisture
2.4. Photosynthetic Parameters
2.5. Wheat Growth and Yield
2.6. WUE and IWP
2.7. Statistical Analysis
3. Results
3.1. Seasonal Variations of Environmental Variables
3.2. Seasonal Changes of Photosynthetic Parameters
3.2.1. Stomatal Conductance
3.2.2. Intercellular CO2
3.2.3. Net Photosynthetic Rate
3.2.4. Transpiration Rate
3.3. Height and Biomass
3.4. Yield and Yield Components
3.5. WUE and IWP
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zheng, Z.; Cai, H.; Yu, L.; Hoogenboom, G. Application of the CSM-CERES-Wheat Model for Yield Prediction and Planting Date Evaluation at Guanzhong Plain in Northwest China. Agron. J. 2017, 109, 204–217. [Google Scholar] [CrossRef]
- Li, Q.; Bian, C.; Liu, X.; Ma, C.; Liu, Q. Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain. Agric. Water Manag. 2015, 153, 71–76. [Google Scholar] [CrossRef]
- Richards, A. Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Bot. 2000, 51, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Samarah, N.H. Effects of drought stress on growth and yield of barley. Agron. Sustain. Dev. 2005, 25, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Rampino, P.; Pataleo, S.; Gerardi, C.; Mita, G.; Perrotta, C. Drought stress response in wheat: Physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ. 2006, 29, 2143–2152. [Google Scholar] [CrossRef] [PubMed]
- Çakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crop. Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Katerji, N.; Mastrorilli, M.; van Hoorn, J.W.; Lahmer, F.Z.; Hamdy, A.; Oweis, T. Durum wheat and barley productivity in saline–drought environments. Eur. J. Agron. 2009, 31, 1–9. [Google Scholar] [CrossRef]
- Ghobadi, M.; Taherabadi, S.; Ghobadi, M.-E.; Mohammadi, G.-R.; Jalali-Honarmand, S. Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress. Ind. Crop. Prod. 2013, 50, 29–38. [Google Scholar] [CrossRef]
- Chen, X.; Hao, M.D. Low contribution of photosynthesis and water-use efficiency to improvement of grain yield in Chinese wheat. Photosynthetica 2015, 53, 519–526. [Google Scholar] [CrossRef]
- Ali, S.; Xu, Y.; Jia, Q.; Ahmad, I.; Wei, T.; Ren, X.; Zhang, P.; Din, R.; Cai, T.; Jia, Z. Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions. Agric. Water Manag. 2018, 201, 207–218. [Google Scholar] [CrossRef]
- Tankari, M.; Wang, C.; Zhang, X.; Li, L.; Soothar, R.; Ma, H.; Xing, H.; Yan, C.; Zhang, Y.; Liu, F.; et al. Leaf Gas Exchange, Plant Water Relations and Water Use Efficiency of Vigna unguiculata L. Walp. Inoculated with Rhizobia under Different Soil Water Regimes. Water 2019, 11, 498. [Google Scholar] [CrossRef] [Green Version]
- Mathobo, R.; Marais, D.; Steyn, J.M. The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agric. Water Manag. 2017, 180, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Torabian, S.; Shakiba, M.R.; Dabbagh, M.N.A. Leaf gas exchange and grain yield of common bean exposed to spermidine under water stress. Photosynthetica 2018, 56, 1–11. [Google Scholar] [CrossRef]
- Izanloo, A.; Condon, A.G.; Langridge, P.; Tester, M.; Schnurbusch, T. Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J. Exp. Bot. 2008, 59, 3327–3346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmo-Silva, A.E.; Keys, A.J.; Andralojc, P.J.; Powers, S.J.; Arrabaca, M.C.; Parry, M.A. Rubisco activities, properties, and regulation in three different C4 grasses under drought. J. Exp. Bot. 2010, 61, 2355–2366. [Google Scholar] [CrossRef] [Green Version]
- Hura, T.; Hura, K.; Grzesiak, M.; Rzepka, A. Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 plants. Acta Physiol. Plant. 2007, 29, 103–113. [Google Scholar] [CrossRef]
- Friso, G.; Giacomelli, L.; Ytterberg, A.J.; Peltier, J.B.; Rudella, A.; Sun, Q.; Wijk, K.J. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: New proteins, new functions, and a plastid proteome database. Plant Cell 2004, 16, 478–499. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Bellot, M.J.; Lorente, B.; Sánchez-Blanco, M.J.; Ortuño, M.F.; Nortes, P.A.; Alarcón, J.J. Influence of Mixed Substrate and Arbuscular Mycorrhizal Fungi on Photosynthetic Efficiency, Nutrient and Water Status and Yield in Tomato Plants Irrigated with Saline Reclaimed Waters. Water 2020, 12, 438. [Google Scholar] [CrossRef] [Green Version]
- Farkas, Z.; Varga-László, E.; Anda, A.; Veisz, O.; Varga, B. Effects of Waterlogging, Drought and Their Combination on Yield and Water-Use Efficiency of Five Hungarian Winter Wheat Varieties. Water 2020, 12, 1318. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Tan, J. Interannual Variations of Evapotranspiration and Water Use Efficiency over an Oasis Cropland in Arid Regions of North-Western China. Water 2020, 12, 1239. [Google Scholar] [CrossRef]
- Liu, E.K.; Mei, X.R.; Yan, C.R.; Gong, D.Z.; Zhang, Y.Q. Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agric. Water Manag. 2016, 167, 75–85. [Google Scholar] [CrossRef]
- Araus, J.L.; Slafer, G.A.; Reynolds, M.P.; Royo, C. Plant breeding and drought in C3 cereals: What should we breed for? Ann. Bot. 2002, 89, 925–940. [Google Scholar] [CrossRef] [PubMed]
- de Santana, T.A.; Oliveira, P.S.; Silva, L.D.; Laviola, B.G.; F. de Almeida, A.-A.; Gomes, F.P. Water use efficiency and consumption in different Brazilian genotypes of Jatropha curcas L. subjected to soil water deficit. Biomass Bioenergy 2015, 75, 119–125. [Google Scholar] [CrossRef]
- Mashilo, J.; Odindo, A.O.; Shimelis, H.A.; Musenge, P.; Tesfay, S.Z.; Magwaza, L.S. Drought tolerance of selected bottle gourd [Lagenaria siceraria (Molina) Standl.] landraces assessed by leaf gas exchange and photosynthetic efficiency. Plant Physiol. Biochem. 2017, 120, 75–87. [Google Scholar] [CrossRef]
- Ali, M.H.; Hoque, M.R.; Hassan, A.A.; Khair, A. Effects of deficit irrigation on yield, water productivity, and economic returns of wheat. Agric. Water Manag. 2007, 92, 151–161. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; Langeluddecke, P.; Stauss, R.; van den Boom, T.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Quanqi, L.; Xunbo, Z.; Yuhai, C.; Songlie, Y. Water consumption characteristics of winter wheat grown using different planting patterns and deficit irrigation regime. Agric. Water Manag. 2012, 105, 8–12. [Google Scholar] [CrossRef]
- Yan, W.; Zhong, Y.; Shangguan, Z. A meta-analysis of leaf gas exchange and water status responses to drought. Sci. Rep. 2016, 6, 20917. [Google Scholar] [CrossRef] [Green Version]
- Subrahmanyam, D.; Subash, N.; Haris, A. Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. Photosynthetica 2006, 44, 125–129. [Google Scholar] [CrossRef]
- Ma, S.-C.; Duan, A.-W.; Wang, R.; Guan, Z.-M.; Yang, S.-J.; Ma, S.-T.; Shao, Y. Root-sourced signal and photosynthetic traits, dry matter accumulation and remobilization, and yield stability in winter wheat as affected by regulated deficit irrigation. Agric. Water Manag. 2015, 148, 123–129. [Google Scholar] [CrossRef]
- Harb, A.; Krishnan, A.; Ambavaram, M.M.; Pereira, A. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol. 2010, 154, 1254–1271. [Google Scholar] [CrossRef] [Green Version]
- Ripley, B.S.; Gilbert, M.E.; Ibrahim, D.G.; Osborne, C.P. Drought constraints on C4 photosynthesis: Stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. J. Exp. Bot. 2007, 58, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.G. Stomatal control of photosynthesis and transpiration. J. Exp. Bot. 1998, 49, 387–398. [Google Scholar] [CrossRef]
- Tardieu, F.; Simonneau, T. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: Modelling isohydric and anisohydric behaviours. J. Exp. Bot. 1998, 49, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Bota, J.; Medrano, H.; Flexas, J. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol. 2004, 162, 671–681. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinauer Associates: Sunderland, Tyne and Wear, England, 2002. [Google Scholar]
- Samarah, N.H.; Alqudah, A.M.; Amayreh, J.A.; McAndrews, G.M. The Effect of Late-terminal Drought Stress on Yield Components of Four Barley Cultivars. J. Agron. Crop Sci. 2009, 195, 427–441. [Google Scholar] [CrossRef]
- Abbas, T.; Rizwan, M.; Ali, S.; Adrees, M.; Mahmood, A.; Zia-Ur-Rehman, M.; Ibrahim, M.; Arshad, M.; Qayyum, M.F. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol. Environ. Saf. 2018, 148, 825–833. [Google Scholar] [CrossRef]
- Martyniak, L. Response of spring cereals to a deficit of atmospheric precipitation in the particular stages of plant growth and development. Agric. Water Manag. 2008, 95, 171–178. [Google Scholar] [CrossRef]
- Villegas, D.; Garcia del Moral, L.F.; Rharrabti, Y.; Martos, V.; Royo, C. Morphological traits above the flag leaf node as indicators of drought susceptibility index in durum wheat. J. Agron. Crop Sci. 2007, 193, 103–116. [Google Scholar] [CrossRef]
- Ehdaie, B.; Alloush, G.A.; Waines, J.G. Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Res. 2008, 106, 34–43. [Google Scholar] [CrossRef]
- Leilah, A.A.; Al-Khateeb, S.A. Statistical analysis of wheat yield under drought conditions. J. Arid Environ. 2005, 61, 483–496. [Google Scholar] [CrossRef]
- Kang, S.Z.; Zhang, L.; Liang, Y.L.; Hu, X.T.; Cai, H.J.; Gu, B.J. Effects of limited Irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China. Agric. Water Manag. 2002, 55, 203–216. [Google Scholar] [CrossRef]
- Ye, Y.S.; Liang, X.Q.; Chen, Y.X.; Liu, J.; Gu, J.T.; Guo, R.; Li, L. Alternate wettingand drying irrigation and controlled -release nitrogen fertilizer in late-seasonrice. Effects on dry matter accumulation, yield, water and nitrogen use. FieldCrop Res. 2013, 144, 212–224. [Google Scholar] [CrossRef]
- Oweis, T.; Zhang, H.; Pala, M. Water use efficiency of rainfed and irrigated bread wheat in a Mediterranean environment. Agron. J. 2000, 92, 231–238. [Google Scholar] [CrossRef]
Photosynthetic Parameters | Correlation Coefficient | |||
---|---|---|---|---|
Gs | Ci | Pn | E | |
Gs | 1 | |||
Ci | 0.825 ** | 1 | ||
Pn | 0.791 ** | 0.446 * | 1 | |
E | 0.687 ** | 0.444 * | 0.588 ** | 1 |
Growth Stage | Date | Height (cm) | Fresh Weight (g) | Dry Weight (g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P1 | P2 | P3 | P4 | P1 | P2 | P3 | P4 | ||
Jointing stage | 4/14 | 42.62 ± 1.90a | 36.27 ± 2.04b | 30.06 ± 1.14c | 27.87 ± 0.76c | 2.41 ± 0.16a | 1.84 ± 0.32b | 0.76 ± 0.25c | 0.90 ± 0.19c | 0.38 ± 0.05a | 0.31 ± 0.07a | 0.14 ± 0.04b | 0.15 ± 0.05b |
4/22 | 59.82 ± 2.67a | 50.7 ± 1.07b | 43.46 ± 2.51c | 44.23 ± 2.19bc | 6.47 ± 0.34a | 5.69 ± 0.43b | 4.86 ± 0.52c | 5.36 ± 0.38b | 1.22 ± 0.23a | 1.28 ± 0.25a | 0.81 ± 0.29c | 0.95 ± 0.16b | |
4/26 | 63.47 ± 3.65a | 53.69 ± 2.89b | 44.2 ± 1.97c | 45.21 ± 1.7c | 6.97 ± 0.44a | 6.05 ± 0.29b | 5.37 ± 0.46c | 6.17 ± 0.38b | 1.27 ± 0.14a | 1.27 ± 0.25a | 0.95 ± 0.16c | 1.09 ± 0.14b | |
5/1 | 70.38 ± 2.59a | 59.02 ± 2.48b | 50.89 ± 1.94c | 49.29 ± 1.21c | 8.49 ± 0.53a | 7.16 ± 0.48b | 6.35 ± 0.66c | 6.96 ± 0.43bc | 1.39 ± 0.19a | 1.30 ± 0.23a | 1.25 ± 0.28a | 1.39 ± 0.16a | |
Heading–flowering stage | 5/6 | 80.78 ± 3.78a | 60.7 ± 1.44b | 50.98 ± 2.43c | 53.77 ± 2.06bc | 9.96 ± 0.17b | 10.78 ± 0.29a | 8.50 ± 0.23c | 7.31 ± 0.23d | 2.11 ± 0.22a | 2.29 ± 0.26a | 1.82 ± 0.19b | 1.72 ± 0.17b |
5/9 | 81.14 ± 3.92a | 67 ± 2.42b | 54.8 ± 3.04c | 54.83 ± 1.87c | 9.11 ± 0.63a | 7.16 ± 0.67b | 7.10 ± 0.78b | 6.64 ± 0.59b | 1.97 ± 0.17a | 1.76 ± 0.20a | 1.70 ± 0.21a | 1.81 ± 0.19a | |
5/16 | 83.33 ± 1.77a | 69.36 ± 1.95b | 57.12 ± 1.19c | 55.62 ± 1.52c | 10.07 ± 0.47a | 9.44 ± 0.69b | 7.93 ± 0.72c | 6.51 ± 0.65d | 2.32 ± 0.19a | 2.56 ± 0.24a | 1.99 ± 0.19b | 1.99 ± 0.20b | |
Grain-filling–maturity stage | 5/21 | 84 ± 5.29a | 69.25 ± 0.48b | 57.22 ± 1.6c | 55.63 ± 1.61c | 9.71 ± 0.39a | 9.99 ± 0.71a | 8.42 ± 0.67a | 4.98 ± 0.38b | 2.77 ± 0.13ab | 3.08 ± 0.26a | 2.52 ± 0.21b | 1.79 ± 0.13c |
5/29 | 84.58 ± 3.95a | 69.38 ± 3.48b | 64.91 ± 2.74b | 56.02 ± 1.09c | 10.35 ± 0.66a | 10.00 ± 0.73a | 8.66 ± 0.46b | 4.50 ± 0.56c | 3.38 ± 0.19a | 3.45 ± 0.23a | 3.15 ± 0.18a | 1.87 ± 0.14b |
Plot | Irrigation Amount (mm) | ET (mm) | WUE (kg/hm2/mm) | IWP (kg/hm2/mm) |
---|---|---|---|---|
P1 | 366.67 | 484.60 ± 18.19a | 11.40 ± 0.67a | 15.01 ± 0.43b |
P2 | 300.00 | 417.03 ± 4.95b | 12.25 ± 0.52a | 17.03 ± 0.67a |
P3 | 261.91 | 381.35 ± 15.36b | 9.61 ± 0.51b | 13.94 ± 0.28b |
P4 | 214.29 | 336.73 ± 3.69c | 9.10 ± 0.30b | 14.29 ± 0.41b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Liu, L.; Shen, Q.; Yang, J.; Han, X.; Tian, F.; Wu, J. Effects of Water Stress on Photosynthesis, Yield, and Water Use Efficiency in Winter Wheat. Water 2020, 12, 2127. https://doi.org/10.3390/w12082127
Zhao W, Liu L, Shen Q, Yang J, Han X, Tian F, Wu J. Effects of Water Stress on Photosynthesis, Yield, and Water Use Efficiency in Winter Wheat. Water. 2020; 12(8):2127. https://doi.org/10.3390/w12082127
Chicago/Turabian StyleZhao, Wenhui, Leizhen Liu, Qiu Shen, Jianhua Yang, Xinyi Han, Feng Tian, and Jianjun Wu. 2020. "Effects of Water Stress on Photosynthesis, Yield, and Water Use Efficiency in Winter Wheat" Water 12, no. 8: 2127. https://doi.org/10.3390/w12082127
APA StyleZhao, W., Liu, L., Shen, Q., Yang, J., Han, X., Tian, F., & Wu, J. (2020). Effects of Water Stress on Photosynthesis, Yield, and Water Use Efficiency in Winter Wheat. Water, 12(8), 2127. https://doi.org/10.3390/w12082127