Challenges and Prospects of Using Treated Wastewater to Manage Water Scarcity Crises in the Gulf Cooperation Council (GCC) Countries
Abstract
:1. Introduction
2. Physical Settings
3. Water Resources of the GCC Countries
3.1. Surface Water and Groundwater Resources
3.2. Desalinated Water Resources
3.3. Treated Municipal Wastewater
4. Challenges of Wastewater Use for Agriculture in the GCC Countries
5. Prospects of Wastewater Use in the GCC Countries
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Population Division of the Department of Economic and Social Affairs of the United Nations. World Urbanization Prospects 2018. Available online: https://esa.un.org/unpd/wup/ (accessed on 12 March 2019).
- World Health Organization-UNICEF Report. Progress on Drinking Water and Sanitation 2014. Available online: http://www.who.int/water_sanitation_health/publications/2014/jmp-report/en/ (accessed on 20 October 2014).
- Hussain, M.I.; Muscolo, A.; Farooq, M.; Ahmad, W. Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agric. Water Manag. 2019, 221, 462–476. [Google Scholar] [CrossRef]
- Saif, O.; Mezher, T.; Arafat, H.A. Water security in the GCC countries: Challenges and opportunities. J. Environ. Stud. Sci. 2014, 4, 329–346. [Google Scholar] [CrossRef]
- Alkhamisi, S.A.; Ahmed, M. Opportunities and Challenges of Using Treated Wastewater in Agriculture. In Environmental Cost and Face of Agriculture in Gulf Cooperation Council Countries; Shahid, S., Ahmed, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 109–123. [Google Scholar]
- Brown, J.J.; Das, P.; Al-Saidi, M. Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation. Sustainability 2018, 10, 1364. [Google Scholar] [CrossRef] [Green Version]
- Al-Saidi, M.; Saliba, S. Water, Energy and Food Supply Security in the Gulf Cooperation Council (GCC) Countries—A Risk Perspective. Water 2019, 11, 455. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, H.K.; Johnston, M.; Foley, J.A.; Holloway, T.; Monfreda, C.; Ramankutty, N. Carbon payback times for crop-based biofuel expansion in the tropics: The effects of changing yield and technology. Environ. Res. Lett. 2008, 3, 034001. [Google Scholar] [CrossRef]
- Al-Dakheel, A.J.; Hussain, M.I. Genotypic variation for salinity tolerance in Cenchrus ciliaris L. Front. Plant Sci. 2016, 7, 1090. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.I.; Qureshi, A.S. Health risks of heavy metal exposure and microbial contamination through consumption of vegetables irrigated with treated wastewater at Dubai, UAE. Environ. Sci. Pollut. Res. 2020, 27, 11213–11226. [Google Scholar] [CrossRef]
- Qadir, M.; Drechsel, P.; Cisneros, B.J.; Kim, Y.; Pramanik, A.; Mehta, P.; Olaniyan, O. Global and regional potential of wastewater as a water, nutrient and energy source. Nat. Resour. Forum 2020, 44, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Thebo, A.L.; Drechsel, P.; Lambin, E.F. Global assessment of urban and peri-urban agriculture: Irrigated and rainfed croplands. Environ. Res. 2014, 9, 114002. [Google Scholar] [CrossRef]
- Drechsel, P.; Scott, C.A.; Raschid-Sally, L.; Redwood, M.; Bahri, A. Wastewater Irrigation and Health: Assessing and Mitigating Risk in Low-Income Countries; Earthscan: London, UK, 2010. [Google Scholar]
- Mateo-Sagasta, J.; Raschid-Sally, L.; Thebo, A. Global Wastewater and Sludge Production, Treatment and Use. In Wastewater: Economic Asset in an Urbanizing World; Drechsel, P., Qadir, M., Wichelns, D., Eds.; Springer Science+Business Media: Dordrecht, The Netherlands, 2015; pp. 15–38. [Google Scholar]
- Ayoub, S.; Al-Shdiefat, S.; Rawashdeh, H.; Bashabsheh, I. Utilization of reclaimed wastewater for olive irrigation: Effect on soil properties, tree growth, yield and oil content. Agric. Water Manag. 2016, 176, 163–169. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Gikas, P. Water Reuse: Overview of current practices and trends in the world with emphasis in EU. Water Util. J. 2014, 6, 67–78. [Google Scholar]
- Turner, R.D.R.; Warne, M.S.J.; Dawes, L.A.; Vardy, S.; Will, G.D. Irrigated greywater in an urban sub-division as a potential source of metals to soil, groundwater and surface water. J. Environ. Manag. 2016, 183, 806–817. [Google Scholar] [CrossRef]
- Meng, W.Q.; Wang, Z.W.; Hu, B.B.; Wang, Z.L.; Li, H.Y.; Goodman, R.C. Heavy metals in soil and plants after long-term sewage irrigation at Tianjin China: A case study assessment. Agric. Water Manag. 2016, 171, 153–161. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Hussain, M.I.; Ismail, S.; Khan, Q.M. Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater. Chemosphere 2016, 161, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Thebo, A.L.; Drechsel, P.; Lambin, E.F.; Nelson, K.L. A global, spatially-explicit assessment of irrigated croplands influenced by urban wastewater flows. Environ. Res. Lett. 2017, 12, 074008. [Google Scholar] [CrossRef]
- Choukr-Allah, R. Wastewater Treatment and Reuse. In Arab Environment: Water Sustainable Management of a Scarce Resource; El-Ashry, M., Saab, N., Zeitoon, B., Eds.; Report of the Arab Forum for Environment and Development (AFED); Arab Water Forum: Beirut, Lebanon, 2010; pp. 107–124. [Google Scholar]
- Al-Zubari, W.; Al-Turbak, A.; Zahid, W.; Al-Ruwis, K.; Al-Tkhais, A.; Al-Muataz, I.; Abdelwahab, A.; Murad, A.; Al-Harbi, M.; Al-Sulaymani, Z. An overview of the GCC Unified Water Strategy (2016–2035). Desalin. Water Treat. 2017, 81, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Dawoud, M.A. The Role of Treated Wastewater Reuse in Water Sustainability in GCC Countries. In Proceedings of the WSTA 12th Gulf Water Conference and Exhibition, Manama, Bahrain, 28–30 January 2017. [Google Scholar]
- Bahadir, M.; Aydin, M.E.; Aydin, S.; Beduk, F.; Batarseh, M. Wastewater reuse in Middle East Countries—A review of prospects and challenges. Fresenius Environ. Bull. 2016, 25, 1284–1304. [Google Scholar]
- United Nations Convention to Combat Desertification (UNCCD). Arab Republic of Egypt: National Report for Combating Desertification; Ministry of Agriculture: Cairo, Egypt, 2004.
- FAO AQUASTAT Database. Global Information System on Water and Agriculture. Available online: http://www.fao.org/nr/water/aquastat/main/index.stm (accessed on 15 May 2010).
- Falkenmark, M. Competing freshwater and ecological services in the river basin perspective: An expanded conceptual framework. Water Int. 2010, 25, 172–177. [Google Scholar] [CrossRef]
- GCC-Stat. Water Statistics Report in GCC Countries; GCC Secretariat: Muscat, Oman, 2018. [Google Scholar]
- Low, M.C. Ottoman Infrastructures of the Saudi Hydro-State: The Technopolitics of Pilgrimage and Potable Water in the Hijaz. Comp. Stud. Soc. Hist. 2015, 57, 942–974. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, A.; Anadon, L.D. The water–energy nexus in Middle East and North Africa. Energy Policy 2011, 39, 4529–4540. [Google Scholar] [CrossRef]
- Osman, M.; Gachino, G.; Hoque, A. Electricity consumption and economic growth in the GCC countries: Panel data analysis. Energy Policy 2016, 98, 318–327. [Google Scholar] [CrossRef]
- Mezher, T.; Fath, H.; Abbas, Z.; Khaled, A. Techno-economic assessment and environmental impacts of desalination technologies. Desalination 2011, 266, 263–273. [Google Scholar] [CrossRef]
- Ferroukhi, R.; Khalid, A.; Hawila, D.; Nagpal, D.; El-Katiri, L.; Fthenakis, V.; Al-Fara, A. Renewable Energy Market Analysis—The GCC Region; International Renewable Energy Agency: Abu Dhabi, UAE, 2016. [Google Scholar]
- Ouda, O. Treated wastewater in Saudi-Arabia: Challenges and initiatives. Int. J. Water Res. Dev. 2015, 32. [Google Scholar] [CrossRef]
- Keraita, B.; Jimenez, B.; Drechsel, P. Extent and implications of agricultural reuse of untreated, partly treated and diluted wastewater in developing countries. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Res. 2008, 3, 1–15. [Google Scholar] [CrossRef]
- Hu, W.; Chen, Y.; Huang, B.; Niedermann, S. Health risk assessment of heavy metals in soils and vegetables from a typical green house vegetable production system in China. Hum. Ecol. Risk Assess. 2014, 20, 1264–1280. [Google Scholar] [CrossRef]
- Huang, Z.; Pan, X.D.; Wu, P.G.; Han, J.L.; Chen, Q. Heavy metals in vegetables and the health risk to population in Zhejiang, China. Food Control 2014, 36, 248–252. [Google Scholar] [CrossRef]
- Abusam, A.; Shahalam, A.B. Wastewater reuse in Kuwait: Opportunities and constraints. WIT Trans. Ecol. Environ. 2013, 2, 179. [Google Scholar] [CrossRef] [Green Version]
- WHO (World Health Organization). Compendium of Standards for Wastewater Reuse in the Eastern Mediterranean Region; Regional Office for the Eastern Mediterranean, Regional Center for Environmental Health Activities (CEHA): Cairo, Egypt, 2006. [Google Scholar]
- Darwish, M.; Abdulrahim, H.; Mabrouk, A.N.; Hassan, A.; Shomar, B. Reclaimed wastewater for agriculture irrigation in Qatar. Glob. J. Agric. Res. Rev. 2015, 3, 106–120. [Google Scholar]
- Liu, G.N.; Tao, L.; Liu, X.H.; Hou, J.; Wang, A.J.; Li, R.P. Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China. J. Geochem. Explor. 2013, 132, 156–163. [Google Scholar] [CrossRef]
- Aydin, M.E.; Aydin, S.; Beduk, F.; Tor, A.; Tekinay, A.; Kolb, M.; Bahadir, M. Effects of long-term irrigation with untreated municipal wastewater on soil properties and crop quality. Environ. Sci. Pollut. Res. 2015, 22, 19203–19212. [Google Scholar] [CrossRef]
- Lu, T.; Li, J.M.; Wang, X.Q.; Ma, Y.B.; Smolders, E.; Zhu, N.W. Derivation of ecological criteria for copper in land-applied biosolids and biosolid-amended agricultural soils. J. Environ. Manag. 2016, 183, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Kretschmer, N.; Ribbe, L.; Gaese, H. Wastewater reuse in agriculture, technology resource management and development. Spec. Issue Water Manag. 2002, 2, 37–64. [Google Scholar]
- Özerol, G.; Günther, D. The Role of Socio-Economic Indicators for the Assessment of Wastewater Reuse in the Mediterranean Region. In Non-Conventional Water Use: WASAMED Project BARI: CIHEAM-IAMB; Hamdy, A., El Gamal, F., Lamaddalena, N., Bogliotti, C., Guelloubi, R., Eds.; Water Saving in Mediterranean Agriculture Workshop: Cairo, Egypt, 2005; pp. 169–178. Available online: http://ressources.ciheam.org/om/pdf/b53/00800760.pdf (accessed on 11 March 2012).
- Aleisa, E.; Al-Zubari, W. Wastewater reuse in the countries of Gulf Cooperation Council (GCC): The lost opportunity. Environ. Monit. Assess. 2017, 189, 553. [Google Scholar] [CrossRef]
- Kfir, O.; Tal, A.; Gross, A.; Adar, E. The effect of reservoir operational features on recycled wastewater quality. Resour. Conserv. Recycl. 2012, 68, 76–87. [Google Scholar] [CrossRef]
- Qadir, M.; Wichelns, D.; Raschid-Sally, L.; McCornick, P.G.; Drechsel, P.; Bahri, A.; Minhas, P.S. The challenges of wastewater irrigation in developing countries. Agric. Water Manag. 2010, 97, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Chenini, F. INNOVA-MED Deliverable 11: Critical Overview of New Practices in the Re-Use of Treated Wastewater and Sludge in the Mediterranean Region. Internal Report of the INNOVA-MED Expert Working Group 3. 2009. Available online: https://books.google.co.jp/books?id=oAD9CAAAQBAJ&pg=PA44&lpg=PA44&dq=Critical+Overview+of+New+Practices+in+the+Re-Use+of+Treated+Wastewater+and+Sludge+in+the+Mediterranean+Region&source=bl&ots=5FIQAqC8LH&sig=ACfU3U0hf455jPh6JhzZPA4waAY2ddu3Ig&hl=zh-CN&sa=X&ved=2ahUKEwi86-Wcw7_qAhUYa94KHUPYAYIQ6AEwAHoECAoQAQ#v=onepage&q=Critical%20Overview%20of%20New%20Practices%20in%20the%20Re-Use%20of%20Treated%20Wastewater%20and%20Sludge%20in%20the%20Mediterranean%20Region&f=false (accessed on 8 July 2020).
- Bahri, A. Water reuse in Middle Eastern and North African countries. In Water Reuse: An International Survey of Current Practice, Issues and Needs; Jimenez, B., Asano, T., Eds.; IWA Publishing: London, UK, 2008. [Google Scholar]
- Chowdhury, R.K.; Rajupt, M.A. Will greywater reuse really affect the sewer flow? Experience of a residential complex in Al Ain, UAE. Water Sci. Technol. Water Supply 2017, 17, 246–258. [Google Scholar] [CrossRef]
- Choukr-Allah, R. Wastewater treatment and reuse in the Arab Regions. Biosaline News 12 2011, 2, 4–5. [Google Scholar]
- Alkhamisi, S.A.; Abdelrahman, H.A.; Ahmed, M.; Goosen, M.F.A. Assessment of reclaimed water irrigation on growth, yield, and water-use efficiency of forage crops. Appl. Water Sci. J. 2011, 1, 57–65. [Google Scholar] [CrossRef] [Green Version]
- MAF (Ministry of Agriculture and Fisheries). Final Report—The Pilot Project on Utilization of Treated Wastewater in Forage Production; Directorate General of Agriculture and Livestock; Research; Ministry of agriculture and Fisheries: Muscat, Oman, 2011. [Google Scholar]
- Botella, S.; Jiménez, A.; Boukharouba, A.; Ferrús, M.A. Reduction of Salmonella Enterica in Ready to Eat Lettuce Leaves: Effectiveness of Sodium Hypochlorite Washing. In Exploring Microorganisms; Méndez-Vilas, A., Ed.; Brown Walker Press: Irvine, CA, USA, 2018; pp. 105–109. [Google Scholar]
- Ssemanda, J.N.; Joosten, H.; Bagabe, M.C.; Zwietering, M.H.; Reij, M.W. Reduction of microbial counts during kitchen scale washing and sanitization of salad vegetables. Food Control 2018, 85, 495–503. [Google Scholar] [CrossRef]
Countries | Population (millions) a | Average Annual Rainfall (mm) b | Average Potential Evaporation (mm/year) b | Annual Renewable Freshwater Resources (hm3) c | Average Annual Freshwater Availability (m3/capita) d | Average Water use by Agriculture (% of total) e | Added Value to the GDP (%) e | Average Annual Groundwater Abstraction (hm3) b | Average Annual Groundwater Recharge (hm3) b |
---|---|---|---|---|---|---|---|---|---|
Bahrain | 1.70 | 80 | 1650–2050 | 116 | 70 | 45 | 0.3 | 155 | 150 |
Kuwait | 4.30 | 110 | 1900–3500 | 20 | 5 | 54 | 0.4 | 496 | 160 |
Oman | 5.10 | 50–300 | 1900–3000 | 1400 | 275 | 89 | 1.3 | 1218 | 900 |
Qatar | 2.90 | 75 | 2000–2700 | 58 | 20 | 59 | 0.1 | 250 | 50 |
Saudi Arabia | 34.8 | 70–500 | 3500–4500 | 2400 | 70 | 88 | 1.9 | 21595 | 3850 |
UAE | 9.90 | 90 | 3900–4050 | 150 | 16 | 83 | 0.7 | 3536 | 190 |
Total | 59.7 | 60–190 | 2475–3300 | 4144 | 76 | 70 | 0.80 | 27250 | 5300 |
Countries | No. of Plants a | Total Installed Capacity (hm3) a | Desalinated Water Produced (hm3) a | Desalination Energy Requirements (kWh/m3) b | GHG Emissions (CO2 e/m3) b | Share of Desalinated Water in Municipal Water Supply (%) b |
---|---|---|---|---|---|---|
Bahrain | 5 | 313 | 242 | 20 | 13 | 90.1 |
Kuwait | 10 | 1036 | 712 | 13 | 13 | 84.2 |
Oman | 52 | 280 | 280 | 20 | 21 | 73.7 |
Qatar | 9 | 624 | 560 | 20 | 11.3 | 97.3 |
Saudi- Arabia | 313 | 2812 | 1947 | 20 | 21 | 55.1 |
UAE | 50 | 2660 | 2004 | 15.4 | 15 | 100 |
Total | 439 | 7725 | 5745 |
Countries | No. of Plants a | Annual Design Capacity (hm3) a,c | Volume of Wastewater Collected (hm3) a | Volume of Wastewater Treated (hm3) a | Volume of Reused of Treated (hm3) b | % of Treated of Collected (%) b | % of Reused of Treated (%) b |
---|---|---|---|---|---|---|---|
Bahrain | 22 | 135 | 158 | 70 | 63 | 44 | 90 |
Kuwait | 6 | 300 | 320 | 247 | 151 | 77 | 61 |
Oman | 66 | 100 | 68 | 67 | 67 | 99 | 100 |
Qatar | 23 | 110 | 208 | 203 | 203 | 98 | 100 |
Saudi Arabia | 97 | 1970 | 2500 | 1604 | 257 | 64 | 16 |
UAE | 86 | 840 | 746 | 733 | 403 | 98 | 55 |
Total | 300 | 3455 | 4000 | 2924 | 1144 | 73 | 39 |
Parameters | Units | Bahrain c | Kuwait b | Oman c | Qatar d | Saudi Arabia c | UAE a |
---|---|---|---|---|---|---|---|
Faecal coliforms bacteria | Per 100 mL | 1000 | <1000 | 1000 | 1000 | 1000 | <1000 |
EC | µS/m | 2000 | 2000 | 2700 | 700–2000 | 1000 | 2000 |
PH | - | 6.5–9.5 | 6.5–8.5 | 6.0–9.0 | 6.0–8.4 | 6.0–8.5 | 6.0–8.0 |
NH3-N | mg/L | 5 | 15 | 10 | 5 | 5 | 5 |
Nitrogen organic (kjeldhal) | mg/L | 5 | 35 | 10 | 5 | 5 | 10 |
Phosphate phosphorus | mg/L | - | 30 | 30 | 30 | - | 20 |
Biological oxygen demand (BOD) | mg/L | 10 | 20 | 20 | 5 | 10 | 20 |
Chemical oxygen demand (COD) | mg/L | 40 | 100 | 200 | 50 | 50 | 100 |
Total dissolved solids | mg/L | 2000 | 1500 | 1500 | 500–2000 | 2000 | 1500 |
Total suspended solids | mg/L | 10 | 15 | 15 | 50 | 10 | 50 |
Residual chlorine | mg/L | <0.2 | <0.2 | - | 0.5–1.0 | <0.2 | 0.5–1.0 |
Arsenic (As) | mg/L | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.05 |
Cadmium (Cd) | mg/L | 0.1 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Chromium (Cr) | mg/L | 0.1 | 0.05 | 0.05 | 0..1 | 0.05 | 0.1 |
Copper (Cu) | mg/L | 0.2 | 0.2 | 0.05 | 0.2 | 0.05 | 0.2 |
Iron (Fe) | mg/L | 5.0 | 5.0 | 1.0 | 5.0 | 2.0 | 2.0 |
Lead (Pb) | mg/L | 5.0 | 0.5 | 0.2 | 5.0 | 0.1 | 0.5 |
Magnesium (Mg) | mg/L | 100 | 100 | 150 | 100 | 150 | 100 |
Mercury (Hg) | mg/L | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 |
Selenium (Se) | mg/L | 0.02 | - | 0.02 | 0.02 | 0.02 | 0.02 |
Sodium (Na) | mg/L | 300 | - | 300 | 300 | 500 | |
Zinc (Zn) | mg/L | 2.0 | 2.0 | 5 | 2.0 | 2.0 | 0.5 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qureshi, A.S. Challenges and Prospects of Using Treated Wastewater to Manage Water Scarcity Crises in the Gulf Cooperation Council (GCC) Countries. Water 2020, 12, 1971. https://doi.org/10.3390/w12071971
Qureshi AS. Challenges and Prospects of Using Treated Wastewater to Manage Water Scarcity Crises in the Gulf Cooperation Council (GCC) Countries. Water. 2020; 12(7):1971. https://doi.org/10.3390/w12071971
Chicago/Turabian StyleQureshi, Asad Sarwar. 2020. "Challenges and Prospects of Using Treated Wastewater to Manage Water Scarcity Crises in the Gulf Cooperation Council (GCC) Countries" Water 12, no. 7: 1971. https://doi.org/10.3390/w12071971
APA StyleQureshi, A. S. (2020). Challenges and Prospects of Using Treated Wastewater to Manage Water Scarcity Crises in the Gulf Cooperation Council (GCC) Countries. Water, 12(7), 1971. https://doi.org/10.3390/w12071971