Soil Hydraulic Properties of Plinthosol in the Middle Yangtze River Basin, Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Soil Sampling
2.3. Measurements of the Hydraulic Parameters
2.4. Discriminant Analysis
3. Results
3.1. Basic Physical and Chemical Properties
3.2. Water Stable Aggregates (WSA)
3.3. Saturated Hydraulic Conductivity (Ks)
3.4. Soil Water Retention Curve (SWRC)
3.5. Soil Disintegration Rate (Dr) and Disintegration Index (Di)
4. Discussion
4.1. Effect of Soil Origin on Soil Hydraulic Properties
4.2. Red Matrix and White Vein on Soil Hydraulic Properties
4.3. Soil Properties and Their Significance for Environmental Evolution
5. Conclusions
- (1)
- Discriminant analysis showed, in the JU profile, the range of Y values was −12.37 to 6.94, and most samples were lower than −2.7411, while in the WH and YE profiles, all Y values were higher than −2.7411. This result indicates that the origin of JU plinthosol is aeolian sediments, while in the WH profile and the YE profile, the origin might be alluvial deposition.
- (2)
- The difference of soil origin affects the soil hydraulic properties. The macro-aggregates content of the JU profile was relatively higher than that of the YE and WH profiles, while Di and Dr were lower in JU plinthosol. Fractal dimension analysis showed the D value of JU plinthosol was lower than that of WH and YE plinthosol, which confirmed that the stability of JU plinthosol was superior to that of the other two sites.
- (3)
- Soil origin plays a basic role in soil particle size distribution, which affects the water holding capacity, soil stability, hydraulic conductivity, and soil-water holding capacity. Meanwhile, soil hydraulic conductivity has a strong correlation with the organic matter contents.
- (4)
- The water stability of white vein and red matrix showed great differences. The particle size composition and the proportion of white vein and red matrix played an important role in the difference of soil hydraulic properties.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, W.; Li, Z.; Cai, C.; Guo, Z.; Chen, J.; Wang, J. Mechanical properties and soil stability affected by fertilizer treatments for an Ultisol in subtropical China. Plant Soil 2013, 363, 157–174. [Google Scholar] [CrossRef]
- Barthès, B.G.; Kouakoua, E.; Larré-Larrouy, M.; Razafimbelo, T.M.; de Luca, E.F.; Azontonde, A.; Neves, C.S.V.J.; de Freitas, P.L.; Feller, C.L. Texture and sesquioxide effects on water-stable aggregates and organic matter in some tropical soils. Geoderma 2008, 143, 14–25. [Google Scholar] [CrossRef]
- Erguler, Z.A.; Ulusay, R. Assessment of physical disintegration characteristics of clay-bearing rocks: Disintegration index test and a new durability classification chart. Eng. Geol. 2009, 105, 11–19. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J. Modeling of soil erosion and sediment transport in the East River Basin in southern China. Sci. Total Environ. 2012, 441, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.Z.; Yu, D.S.; Warner, E.D.; Sun, W.X.; Petersen, G.W.; Gong, Z.T.; Lin, H. Cross-Reference System for Translating Between Genetic Soil Classification of China and Soil Taxonomy. Soil Sci. Soc. Am. J. 2006, 70, 78–83. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, W.; Ye, W.; Shen, M.; Zhang, W.; Wang, H.; Lu, C.; Zhu, L. Yellow-brown earth on Quaternary red clay in Langxi County, Anhui Province in subtropical China: Evidence for paleoclimatic change in late Quaternary period. J. Plant Nutr. Soil Sci. 2008, 171, 542–551. [Google Scholar] [CrossRef]
- Zhang, M.K.; Xu, J.M. Restoration of surface soil fertility of an eroded red soil in southern China. Soil Till. Res. 2005, 80, 13–21. [Google Scholar] [CrossRef]
- Yin, Q.; Guo, Z. Mid-Pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon. Chin. Sci. Bull. 2006, 51, 213–220. [Google Scholar] [CrossRef]
- Eze, P.N.; Udeigwe, T.K.; Meadows, M.E. Plinthite and Its Associated Evolutionary Forms in Soils and Landscapes: A Review. Pedosphere 2014, 24, 153–166. [Google Scholar] [CrossRef]
- Hong, H.; Gu, Y.; Yin, K.; Zhang, K.; Li, Z. Red soils with white net-like veins and their climate significance in south China. Geoderma 2010, 160, 197–207. [Google Scholar] [CrossRef]
- Liu, C.; Deng, C.; Liu, Q. Mineral magnetic studies of the vermiculated red soils in southeast China and their paleoclimatic significance. Palaeogeogr. Palaeocl. 2012, 329, 173–183. [Google Scholar] [CrossRef]
- Hu, X.; Cheng, T.; Wu, H. Do multiple cycles of aeolian deposit-pedogenesis exist in the reticulate red clay sections in southern China. Chin. Sci. Bull. 2003, 48, 1251–1258. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, Y.; Shen, M. Grain-size evidence for multiple origins of the reticulate red clay in southern China. Chin. Sci. Bull. 2005, 50, 910–918. [Google Scholar] [CrossRef]
- Fritsch, E.; Herbillon, A.J.; Do Nascimento, N.R.; Grimaldi, M.; Melfi, A.J. From Plinthic Acrisols to Plinthosols and Gleysols: Iron and groundwater dynamics in the tertiary sediments of the upper Amazon basin. Eur. J. Soil Sci. 2007, 58, 989–1006. [Google Scholar] [CrossRef]
- Liu, C.; Deng, C. The effect of weathering on the grain-size distribution of red soils in south-eastern China and its climatic implications. J. Asian Earth Sci. 2014, 94, 94–104. [Google Scholar] [CrossRef]
- Hu, X.; Du, Y.; Liu, X.; Zhang, G.; Jiang, Y.; Xue, Y. Polypedogenic case of loess overlying red clay as a response to the Last Glacial–Interglacial cycle in mid-subtropical Southeast China. Aeolian Res. 2015, 16, 125–142. [Google Scholar] [CrossRef]
- Xie, S.; Lai, X.; Yi, Y.; Gu, Y.; Liu, Y.; Wang, X.; Liu, G.; Liang, B. Molecular fossils in a Pleistocene river terrace in southern China related to paleoclimate variation. Org. Geochem. 2003, 34, 789–797. [Google Scholar] [CrossRef]
- Arriaga, F.J.; Lowery, B. Corn production on an eroded soil: Effects of total rainfall and soil water storage. Soil Till. Res. 2003, 71, 87–93. [Google Scholar] [CrossRef]
- Bryan, R.B. Soil erodibility and processes of water erosion on hillslope. Geomorphology 2000, 32, 385–415. [Google Scholar] [CrossRef]
- Batista, P.V.G.; Davies, J.; Silva, M.L.N.; Quinton, J.N. On the evaluation of soil erosion models: Are we doing enough? Earth Sci. Rev. 2019, 197, 102898. [Google Scholar] [CrossRef]
- Cosby, B.J.; Hornberger, G.M.; Clapp, R.B.; Ginn, T.R. A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils. Water Resour. Res. 1984, 20, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Liu, Q.; Li, C.; Kharel, G.; An, L.; Stebler, E.; Zhong, Y.; Zou, C.B. Interactive Effect of Meteorological Drought and Vegetation Types on Root Zone Soil Moisture and Runoff in Rangeland Watersheds. Water 2019, 11, 2357. [Google Scholar] [CrossRef] [Green Version]
- Andruschkewitsch, R.; Koch, H.; Ludwig, B. Effect of long-term tillage treatments on the temporal dynamics of water-stable aggregates and on macro-aggregate turnover at three German sites. Geoderma 2014, 217, 57–64. [Google Scholar] [CrossRef]
- Leung, A.K.; Garg, A.; Ng, C.W.W. Effects of plant roots on soil-water retention and induced suction in vegetated soil. Eng. Geol. 2015, 193, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Xu, P.; Li, J.; Qin, S. Microstructure and Unsaturated Geotechnical Properties of Net-like Red Soils in Xuancheng, China. J. Test. Eval. 2015, 43, 1–13. [Google Scholar] [CrossRef]
- Wildemeersch, J.C.J.; Garba, M.; Sabiou, M.; Sleutel, S.; Cornelis, W. The Effect of Water and Soil Conservation (WSC) on the Soil Chemical, Biological, and Physical Quality of a Plinthosol in Niger. Land Degrad. Dev. 2015, 26, 773–783. [Google Scholar] [CrossRef]
- Haruna, S.I.; Anderson, S.H.; Nkongolo, N.V.; Zaibon, S. Soil Hydraulic Properties: Influence of Tillage and Cover Crops. Pedosphere 2018, 28, 430–442. [Google Scholar] [CrossRef]
- Çerçioğlu, M.; Anderson, S.H.; Udawatta, R.P.; Alagele, S. Effect of cover crop management on soil hydraulic properties. Geoderma 2019, 343, 247–253. [Google Scholar] [CrossRef]
- Fu, Q.; Zhao, H.; Li, T.; Hou, R.; Liu, D.; Ji, Y.; Zhou, Z.; Yang, L. Effects of biochar addition on soil hydraulic properties before and after freezing-thawing. Catena 2019, 176, 112–124. [Google Scholar] [CrossRef]
- Chang, C.; Cheng, D.; Qiao, X. Improving estimation of pore size distribution to predict the soil water retention curve from its particle size distribution. Geoderma 2019, 340, 206–212. [Google Scholar] [CrossRef]
- Lin, L.; Chen, J. The effect of conservation practices in sloped croplands on soil hydraulic properties and root-zone moisture dynamics. Hydrol. Process. 2015, 29, 2079–2088. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 11th ed.; USDA-NRCS, U.S. Government Printing Office: Washington, DC, USA, 2010; p. 329.
- Bagarello, V.; Baiamonte, G.; Caia, C. Variability of near-surface saturated hydraulic conductivity for the clay soils of a small Sicilian basin. Geoderma 2019, 340, 133–145. [Google Scholar] [CrossRef]
- Tian, Z.; Kool, D.; Ren, T.; Horton, R.; Heitman, J.L. Approaches for estimating unsaturated soil hydraulic conductivities at various bulk densities with the extended Mualem-van Genuchten model. J. Hydrol. 2019, 572, 719–731. [Google Scholar] [CrossRef] [Green Version]
- Yoder, R.E. A Direct Method of Aggregate Analysis of Soils and a Study of the Physical Nature of Erosion Losses. Agron. J. 1936, 28, 165–169. [Google Scholar] [CrossRef]
- Pinheiro, E.F.M.; Pereira, M.G.; Anjos, L.H.C. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil Till. Res. 2004, 77, 79–84. [Google Scholar] [CrossRef]
- Ahmadi, A.; Neyshabouri, M.R.; Rouhipour, H.; Asadi, H. Fractal dimension of soil aggregates as an index of soil erodibility. J. Hydrol. 2011, 400, 305–311. [Google Scholar] [CrossRef]
- Tagar, A.A.; Adamowski, J.; Memon, M.S.; Do, M.C.; Mashori, A.S.; Soomro, A.S.; Bhayo, W.A. Soil fragmentation and aggregate stability as affected by conventional tillage implements and relations with fractal dimensions. Soil Till. Res. 2020, 197, 104494. [Google Scholar] [CrossRef]
- Grossman, R.B.; Reinsch, T.G. Bulk Density and Linear Extensibility. In Methods of Soil Analysis: Physical Methods; Dane, J.H., Topp, G.C., Eds.; Part 4; Soil Science Society of America: Madison, WI, USA, 2002; pp. 201–228. [Google Scholar]
- Van Genuchten, M.; Leij, F.J.; Yates, S.R. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils, Version 1.0; U.S. Salinity Laboratory: Riverside, CA, USA, 1991; pp. 4–32. [Google Scholar]
- Ghanbarian-Alavijeh, B.; Liaghat, A.; Huang, G.; van Genuchten, M. Estimation of the van Genuchten Soil Water Retention Properties from Soil Textural Data. Pedosphere 2010, 20, 456–465. [Google Scholar] [CrossRef]
- Sahu, B.K. Depositional mechanism from the size analysis of sediments. J. Sediment. Res. 1964, 34, 73–83. [Google Scholar]
- Yang, S.; Li, C.; Zhang, J. Palaeogeographic Evolution Coastal Plain and Provence Study of Postglacial Sediments in North Jiangsu. J. Palaeogeog-English. 2000, 2, 68–75. [Google Scholar]
- Li, C.; Wang, Y. Preliminary exploration on grain characteristic and discrimination of debris flow deposit, moraine and river & like deposit. Mt. Res. 1999, 17, 51–55, (In Chinese with English Abstract). [Google Scholar]
- Zhang, P.; Song, C.; Yang, Y.; Gao, H.; Zhang, H.; Liu, W.; Pan, M.; Liu, P.; Hu, S.; Xia, W. The significance and establishment of discriminant function with grain size of stable lacustrine sediment and aeolian loess. Acta Sedimentol. Sinca 2008, 26, 501–507. [Google Scholar]
- Lu, H.; Vandenberghe, J.; An, Z. Aeolian origin and palaeoclimatic implications of the ’Red Clay’ (north China) as evidenced by grain-size distribution. J. Quat. Sci. 2001, 16, 89–97. [Google Scholar] [CrossRef]
- Le Bissonnais, Y. Aggregate stability and measurement of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Babu, S.; Peter, J.; Mukesh, M.D.; Gartung, E. Significance of soil suction and soil water characteristic curve parameters. Geo-tech. Test. J. 2005, 28, 102–107. [Google Scholar]
- Zhang, Z.; Pendin, V.; Nikolaeva, S.; Zhang, Z.; Wu, J. Disintegration characteristics of a cryolithogenic clay loam with different water content: Moscow covering loam (prQIII), case study. Eng. Geol. 2019, 258, 105159. [Google Scholar]
- Jabro, J.D. Estimation of Saturated Hydraulic Conductivity of Soils from Particle Size Distribution and Bulk Density Data. Trans. ASABE. 1992, 35, 557–560. [Google Scholar] [CrossRef]
- Réfloch, A.; Gaudet, J.; Oxarago, L.; Rossier, Y. Estimation of saturated hydraulic conductivity from ring infiltrometer test taking into account the surface moisture stain extension. J. Hydrol. Hydromech. 2017, 65, 321–324. [Google Scholar] [CrossRef] [Green Version]
- Mirko, C.; Anna Maria, S.; Matteo, T.; Emanuele, B. Spatial Variability of Soil Physical and Hydraulic Properties in a Durum Wheat Field: An Assessment by the BEST-Procedure. Water 2019, 11, 1434. [Google Scholar]
- Feng, L.; Lin, H.; Zhang, M.; Guo, L.; Jin, Z.; Liu, X. Development and evolution of Loess vertical joints on the Chinese Loess Plateau at different spatiotemporal scales. Eng. Geol. 2020, 265, 105372. [Google Scholar] [CrossRef]
- Wang, J.D.; Gu, T.F.; Zhang, M.S.; Xu, Y.J.; Kong, J.X. Experimental study of loess dis-integration characteristics. Earth Surf. Proc. Land. 2019, 44, 1317–1329. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, P.; Li, L.; Zhao, W. Changes of soil particle size fraction along a chronosequence in sandy desertified land: A fundamental process for ecosystem succession and ecological restoration. J. Soils Sediments 2016, 16, 2651–2656. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Han, Z.; Yang, S.; Wang, Y.; Yang, D. Chemical Weathering Intensity and Element Migration Features of the Xiashu Loess Profile in Zhenjiang. J. Geogr. Sci. 2008, 18, 341. [Google Scholar] [CrossRef]
- Barthes, B.; Roose, E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 2002, 47, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Wei, Y.; Wang, D.; Wang, J.; Wang, J.; She, L.; Cai, C. Effects of soil physicochemical properties on aggregate stability along a weathering gradient. Catena 2017, 156, 205–215. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, W.; Han, L.; Chen, X.; Cui, Q.; Yao, H.; Wang, Z. Disintegration behavior of strongly weathered purple mudstone in drawdown area of three gorges reservoir, China. Geomorphology 2018, 315, 68–79. [Google Scholar] [CrossRef]
- Andrade, G.R.P.; Azevedo, A.C.; Lepchak, J.K.; Assis, T.C. Weathering of Permian sedimentary rocks and soil clay minerals transformations under subtropical climate, southern Brazil (Paraná State). Geoderma 2019, 336, 31–48. [Google Scholar] [CrossRef]
- Hunt, A.G.; Ghanbarian, B. Percolation theory for solute transport in porous media: Geochemistry, geomorphology, and carbon cycling. Water Resour. Res. 2016, 52, 7444–7459. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.N.; Lin, H.; Zhang, H.L.; Ye, F.; Wang, Y.W.; Liu, M.X.; Yi, J.; Tian, P. Effects of climatic change on soil hydraulic properties during the last interglacial: Two case studies on the Southern Chinese Loess Plateau. Water 2020, 12, 511. [Google Scholar] [CrossRef] [Green Version]
WH | JU | YE | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ID | BD * (g·cm−3) | OM * (g·kg−1) | Porosity (cm3·cm−3) | ID | BD (g·cm−3) | OM (g·kg−1) | Porosity (cm3·cm−3) | ID | BD (g·cm−3) | OM (g·kg−1) | Porosity (cm3·cm−3) |
W01 | 1.55 | 5.90 | 0.41 | J01 | 1.30 | 5.88 | 0.51 | Y01 | 1.20 | 3.83 | 0.55 |
W02 | 1.60 | 2.35 | 0.40 | J02 | 1.36 | 7.53 | 0.48 | Y02 | 1.23 | 3.06 | 0.54 |
W03 | 1.56 | 2.01 | 0.41 | J03 | 1.37 | 5.51 | 0.48 | Y03 | 1.38 | 3.19 | 0.48 |
W04 | 1.62 | 2.29 | 0.39 | J04 | 1.42 | 5.54 | 0.46 | Y04 | 1.37 | 2.74 | 0.48 |
W05 | 1.61 | 2.31 | 0.39 | J05 | 1.46 | 6.44 | 0.45 | Y05 | 1.34 | 2.16 | 0.49 |
W06 | 1.57 | 3.07 | 0.41 | J06 | 1.50 | 4.03 | 0.43 | Y06 | 1.48 | 2.33 | 0.44 |
W07 | 1.52 | 3.51 | 0.43 | J07 | 1.56 | 3.01 | 0.41 | Y07 | 1.37 | 2.99 | 0.48 |
W08 | 1.54 | 3.54 | 0.42 | J08 | 1.65 | 2.48 | 0.38 | Y08 | 1.45 | 2.75 | 0.45 |
W09 | 1.52 | 3.65 | 0.43 | J09 | 1.63 | 3.46 | 0.38 | Y09 | 1.54 | 4.11 | 0.42 |
W10 | 1.50 | 3.75 | 0.43 | J10 | 1.60 | 2.85 | 0.40 |
Correlation Coefficient | JU | WH | YE |
---|---|---|---|
GMD | −0.3049 | 0.8313 | 0.6450 |
MWD | −0.3497 | 0.9794 | 0.5650 |
OM | 0.7386 | 0.6475 | 0.5372 |
Profile | ID | θr | θs | α | n | m | R2 | RMSD |
---|---|---|---|---|---|---|---|---|
WH | W01 | 0.080 | 0.415 | 0.007 | 1.526 | 0.345 | 0.986 | 0.008 |
W02 | 0.086 | 0.419 | 0.009 | 1.433 | 0.302 | 0.997 | 0.005 | |
W03 | 0.088 | 0.429 | 0.009 | 1.434 | 0.302 | 0.990 | 0.007 | |
W04 | 0.085 | 0.414 | 0.010 | 1.418 | 0.295 | 0.987 | 0.012 | |
W05 | 0.083 | 0.412 | 0.009 | 1.446 | 0.308 | 0.938 | 0.006 | |
W06 | 0.084 | 0.420 | 0.009 | 1.467 | 0.318 | 0.991 | 0.005 | |
W07 | 0.089 | 0.442 | 0.009 | 1.446 | 0.309 | 0.930 | 0.005 | |
W08 | 0.090 | 0.435 | 0.010 | 1.414 | 0.293 | 0.976 | 0.003 | |
W09 | 0.090 | 0.442 | 0.010 | 1.425 | 0.298 | 0.946 | 0.003 | |
W10 | 0.090 | 0.446 | 0.010 | 1.440 | 0.306 | 0.982 | 0.006 | |
JU | J01 | 0.081 | 0.454 | 0.008 | 1.534 | 0.348 | 0.996 | 0.014 |
J02 | 0.077 | 0.433 | 0.008 | 1.546 | 0.353 | 0.993 | 0.011 | |
J03 | 0.087 | 0.452 | 0.010 | 1.469 | 0.319 | 0.993 | 0.011 | |
J04 | 0.087 | 0.442 | 0.011 | 1.431 | 0.301 | 0.994 | 0.009 | |
J05 | 0.087 | 0.455 | 0.011 | 1.459 | 0.315 | 0.994 | 0.011 | |
J06 | 0.086 | 0.426 | 0.012 | 1.394 | 0.283 | 0.993 | 0.009 | |
J07 | 0.089 | 0.451 | 0.011 | 1.425 | 0.298 | 0.990 | 0.008 | |
J08 | 0.086 | 0.396 | 0.016 | 1.253 | 0.202 | 0.989 | 0.010 | |
J09 | 0.085 | 0.399 | 0.014 | 1.290 | 0.225 | 0.989 | 0.005 | |
J10 | 0.082 | 0.401 | 0.012 | 1.359 | 0.264 | 0.992 | 0.006 | |
YE | Y01 | 0.097 | 0.517 | 0.012 | 1.420 | 0.296 | 0.987 | 0.008 |
Y02 | 0.098 | 0.511 | 0.013 | 1.403 | 0.287 | 0.987 | 0.009 | |
Y03 | 0.047 | 0.386 | 0.011 | 1.515 | 0.340 | 0.986 | 0.012 | |
Y04 | 0.096 | 0.477 | 0.013 | 1.372 | 0.271 | 0.997 | 0.013 | |
Y05 | 0.096 | 0.482 | 0.013 | 1.392 | 0.282 | 0.994 | 0.008 | |
Y06 | 0.093 | 0.447 | 0.013 | 1.345 | 0.256 | 0.993 | 0.012 | |
Y07 | 0.094 | 0.474 | 0.012 | 1.406 | 0.289 | 0.987 | 0.009 | |
Y08 | 0.092 | 0.451 | 0.012 | 1.390 | 0.281 | 0.976 | 0.016 | |
Y09 | 0.089 | 0.426 | 0.013 | 1.338 | 0.253 | 0.967 | 0.012 |
Sample | Di/Time (s) | Dr (%·s−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
10 | 30 | 60 | 120 | 180 | 300 | 450 | 600 | 900 | 3600 | ||
J01 | 0.00 | 0.04 | 0.17 | 0.44 | 0.52 | 0.56 | 0.68 | 0.70 | 0.71 | 0.76 | 0.19 |
J02 | 0.30 | 0.57 | 0.81 | 0.91 | 0.97 | 0.97 | 0.98 | 0.98 | 1.00 | 1.00 | 0.32 |
J03 | 0.03 | 0.97 | 0.98 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 |
J04 | 0.02 | 0.28 | 0.55 | 0.60 | 0.72 | 0.77 | 0.77 | 0.90 | 0.90 | 0.91 | 0.26 |
J05 | 0.18 | 0.34 | 0.47 | 0.58 | 0.72 | 0.74 | 0.79 | 0.79 | 0.83 | 0.83 | 0.25 |
J06 | 0.03 | 0.12 | 0.18 | 0.51 | 0.72 | 0.86 | 0.90 | 0.90 | 0.91 | 1.00 | 0.29 |
J07 | 0.00 | 0.00 | 0.00 | 0.06 | 0.12 | 0.14 | 0.15 | 0.19 | 0.19 | 0.21 | 0.05 |
J08 | 0.00 | 0.10 | 0.14 | 0.39 | 0.47 | 0.57 | 0.98 | 0.98 | 0.98 | 1.00 | 0.19 |
J09 | 0.00 | 0.24 | 0.52 | 0.62 | 0.68 | 0.79 | 0.84 | 0.87 | 0.86 | 1.00 | 0.26 |
J10 | 0.00 | 0.29 | 0.44 | 0.66 | 0.66 | 0.67 | 0.67 | 0.65 | 0.68 | 1.00 | 0.22 |
W01 | 0.10 | 0.23 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.08 |
W02 | 0.39 | 0.58 | 0.67 | 0.70 | 0.70 | 0.74 | 0.77 | 0.77 | 0.79 | 0.80 | 0.25 |
W03 | 0.16 | 0.56 | 0.77 | 0.85 | 0.90 | 0.96 | 0.97 | 0.97 | 0.97 | 0.97 | 0.32 |
W04 | 0.31 | 0.71 | 0.88 | 0.92 | 0.94 | 0.96 | 0.96 | 0.98 | 0.98 | 0.98 | 0.32 |
W05 | 0.12 | 0.65 | 0.91 | 0.96 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 |
W06 | 0.21 | 0.63 | 0.75 | 0.84 | 0.89 | 0.93 | 0.95 | 0.95 | 0.97 | 0.98 | 0.31 |
W07 | 0.03 | 0.08 | 0.19 | 0.45 | 0.75 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 |
W08 | 0.13 | 0.33 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 |
W09 | 0.13 | 0.25 | 0.42 | 0.70 | 0.79 | 0.84 | 1.00 | 1.00 | 1.00 | 1.00 | 0.28 |
W10 | 0.04 | 0.45 | 0.66 | 0.80 | 0.96 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 |
Y01 | 0.28 | 0.80 | 0.97 | 0.98 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 |
Y02 | 0.05 | 0.03 | 0.34 | 0.40 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 |
Y03 | 0.04 | 0.25 | 0.33 | 0.66 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 1.00 | 0.33 |
Y04 | 0.16 | 0.64 | 0.80 | 0.92 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 |
Y05 | 0.36 | 0.80 | 0.92 | 0.97 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 |
Y06 | 0.17 | 0.37 | 0.51 | 0.72 | 0.78 | 0.88 | 0.88 | 0.91 | 0.91 | 1.00 | 0.29 |
Y07 | 0.01 | 0.10 | 0.32 | 0.61 | 0.73 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 |
Y08 | 0.13 | 0.30 | 0.70 | 0.85 | 0.86 | 0.94 | 1.00 | 1.00 | 1.00 | 1.00 | 0.31 |
Y09 | 0.31 | 0.68 | 0.87 | 0.88 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wu, T.; Huang, J.; Tian, P.; Zhang, H.; Yang, T. Soil Hydraulic Properties of Plinthosol in the Middle Yangtze River Basin, Southern China. Water 2020, 12, 1783. https://doi.org/10.3390/w12061783
Wang Y, Wu T, Huang J, Tian P, Zhang H, Yang T. Soil Hydraulic Properties of Plinthosol in the Middle Yangtze River Basin, Southern China. Water. 2020; 12(6):1783. https://doi.org/10.3390/w12061783
Chicago/Turabian StyleWang, Yongwu, Tieniu Wu, Jianwu Huang, Pei Tian, Hailin Zhang, and Tiantian Yang. 2020. "Soil Hydraulic Properties of Plinthosol in the Middle Yangtze River Basin, Southern China" Water 12, no. 6: 1783. https://doi.org/10.3390/w12061783
APA StyleWang, Y., Wu, T., Huang, J., Tian, P., Zhang, H., & Yang, T. (2020). Soil Hydraulic Properties of Plinthosol in the Middle Yangtze River Basin, Southern China. Water, 12(6), 1783. https://doi.org/10.3390/w12061783