Climate Change and Species Invasion Drive Decadal Variation in Fish Fauna in the Min River, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Decadal Changes in Species and Taxonomic Diversity
3.2. Spatial and Temporal Patterns
3.3. Species Invasion
3.4. Climatic and Anthropogenic Impacts
4. Discussion
4.1. Species and Taxonomic Diversity
4.2. Fauna Dissimilarity in Space and Time
4.3. External Variables Associated with Fish Diversity
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ficke, A.D.; Myrick, C.A.; Hansen, L.J. Potential impacts of global climate change on freshwater fisheries. Rev. Fish Biol. Fish. 2007, 17, 581–613. [Google Scholar] [CrossRef]
- Vitule, J.R.; Occhi, T.V.; Kang, B.; Matsuzaki, S.I.; Bezerra, L.A.; Daga, V.S.; Faria, L.; Frehse, F.D.A.; Walter, F.; Padial, A.A. Intra-country introductions unraveling global hotspots of alien fish species. Biodivers. Conserv. 2019, 28, 3037–3043. [Google Scholar] [CrossRef]
- Kang, B.; Deng, J.M.; Wu, Y.F.; Chen, L.Q.; Zhang, J.; Qiu, H.; Lu, Y.Y.; He, D.M. Mapping China’s freshwater fishes: Diversity and biogeography. Fish Fish. 2014, 15, 209–230. [Google Scholar] [CrossRef]
- Winemiller, K.O.; McIntyre, P.B.; Castello, L.; FluetChouinard, E.; Giarrizzo, T.; Nam, S.; Baird, I.G.; Darwall, W.; Lujan, N.K.; Harrison, I.; et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 2016, 351, 128–129. [Google Scholar] [CrossRef] [Green Version]
- Wolter, C.; Arlinghaus, R. Navigation impacts on freshwater fish assemblages: The ecological relevance of swimming performance. Rev. Fish Biol. Fish. 2003, 13, 68–89. [Google Scholar] [CrossRef]
- Radinger, J.; Essl, F.; Hölker, F.; Horký, P.; Slavík, O.; Wolter, C. The future distribution of river fish: The complex interplay of climate and land use changes, species dispersal and movement barriers. Glob. Chang. Biol. 2017, 23, 4970–4986. [Google Scholar] [CrossRef]
- Rodriguez-Dominguez, A.; Connell, S.D.; Leung, J.Y.S.; Nagelkerken, I. Adaptive responses of fishes to climate change: Feedback between physiology and behaviour. Sci. Total Environ. 2019, 692, 1242–1249. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and Evolutionary Responses to Recent Climate Change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef] [Green Version]
- Biro, P.A.; Post, J.R.; Booth, D.J. Mechanisms for climate-induced mortality of fish populations in whole-lake experiments. Proc. Natl. Acad. Sci. USA 2007, 104, 9715–9719. [Google Scholar] [CrossRef] [Green Version]
- Olden, J.D.; Poff, N.L.; Douglas, M.R.; Douglas, M.E.; Fausch, K.D. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 2004, 19, 18–24. [Google Scholar] [CrossRef]
- Villéger, S.; Blanchet, S.; Beauchard, O.; Oberdorff, T.; Brosse, S. Homogenization patterns of the world’s freshwater fish faunas. Proc. Natl. Acad. Sci. USA 2011, 108, 18003–18008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frehse, F.A.; Braga, R.R.; Nocera, G.A.; Vitule, J.R.S. Non-native species and invasion biology in a megadiverse country: Scientometric analysis and ecological interactions in Brazil. Biol. Invasions 2016, 18, 3713. [Google Scholar] [CrossRef]
- Zakaria-Ismail, M. Zoogeography and biodiversity of the freshwater fishes of Southeast Asia. Hydrobiologia 1994, 285, 41–48. [Google Scholar] [CrossRef]
- Chen, Y.; Qu, X.; Xiong, F.Y.; Liu, Y.; Wang, L.Z.; Hughes, R.M. Challenges to saving China’s freshwater biodiversity: Fishery exploitation and landscape pressures. Ambio 2020, 49, 926–938. [Google Scholar] [CrossRef]
- Zhang, H.; Jarić, I.; Roberts, D.L.; He, Y.F.; Du, H.; Wu, J.; Wang, C.; Wei, Q. Extinction of one of the world’s largest freshwater fishes: Lessons for conserving the endangered Yangtze fauna. Sci. Total Environ. 2020, 710, 136242. [Google Scholar] [CrossRef]
- Liu, C.L.; He, D.K.; Chen, Y.F.; Olden, J.D. Species invasions threaten the antiquity of China’s freshwater fish fauna. Divers. Distrib. 2017, 23, 556–566. [Google Scholar] [CrossRef]
- Xiong, W.; Sui, X.Y.; Liang, S.H.; Che, Y.F. Non-native freshwater fish species in China. Rev. Fish Biol. Fish. 2015, 25, 651–687. [Google Scholar] [CrossRef]
- Wang, G.Y.; Innes, J.L.; Hajjar, R.; Zhang, X.P.; Wang, J.X. Public Awareness and Perceptions of Watershed Management in the Min River Area, Fujian, China. Soc. Natur. Resour. 2013, 26, 586–604. [Google Scholar] [CrossRef]
- Wu, H.W. Notes on the fishes from the Coast of Foochow region and Ming River. Contributions from the Biological Laboratory of the Science Society of China Nanking. Zool. Ser. 1931, 7, 1–64. [Google Scholar]
- Nichols, J.T.; Tyler, R. The Freshwater Fishes of China; American Museum of Natural History: New York, NY, USA, 1943; p. 322. [Google Scholar]
- Anonymous. List and Distribution of Fishes in Minjiang River. Fujian Fish. 1987, 1987, 42–48. [Google Scholar]
- Fujian Chorography Compilation Committee. Fujian Chorography; Fangzi Publishing: Fuzhou, China, 2002. [Google Scholar]
- National Bureau of Statistics. China Population Statistics Yearbook; China Statistics Press: Beijing, China, 1988. [Google Scholar]
- National Bureau of Statistics. China Population Statistics Yearbook; China Statistics Press: Beijing, China, 2015. [Google Scholar]
- Clarke, K.R.; Warwick, R.M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 1998, 35, 523–531. [Google Scholar] [CrossRef]
- Clarke, K.R.; Warwick, R.M. A further biodiversity index applicable to species lists: Variation in taxonomic distinctness. Mar. Ecol. Prog. Ser. 2001, 216, 265–278. [Google Scholar] [CrossRef]
- Rahel, F.J. Homogenization, differentiation, and the widespread alteration of fish faunas. In Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques; American Fisheries Society, Symposium: Bethesda, MD, USA, 2010; Volume 73, pp. 311–326. [Google Scholar]
- Chen, Y.Y. Systematic studies on the fishes of the family Homalopteridae of China II. Classification of the fishes of the subfamily Gastromyzoninae. Acta Hydrobiol. Sin. 1980, 7, 95–120. [Google Scholar]
- Fishes of Fujian Province Editorial Subcommittee. The Fishes of Fujian Province (Part I); Fujian Science and Technology Press: Fuzhou, China, 1984. [Google Scholar]
- Margules, C.R.; Pressey, R.L. Systematic conservation planning. Nature 2000, 405, 243–253. [Google Scholar]
- Strecker, A.L.; Olden, J.D.; Whittier, J.B.; Paukert, C.P. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecol. Appl. 2011, 21, 3002–3013. [Google Scholar] [CrossRef] [Green Version]
- Heino, J. The relationship between species richness and taxonomic distinctness in freshwater organisms. Limnol. Oceanogr. 2005, 50, 978–986. [Google Scholar] [CrossRef]
- Kang, B.; Huang, X.X.; Yan, Y.Z.; Yan, Y.R.; Lin, H.D. Continental-scale analysis of taxonomic and functional fish diversity in the Yangtze river. Glob. Ecol. Conserv. 2018, 15, e00442. [Google Scholar] [CrossRef]
- Brown, B.L.; Swan, C.M. Dendritic network structure constrains metacommunity properties in riverine ecosystems. J. Anim. Ecol. 2010, 79, 571–580. [Google Scholar]
- Tonkin, J.D.; Heino, J.; Altermatt, F. Metacommunities in river networks: The importance of network structure and connectivity on patterns and processes. Freshw. Biol. 2018, 63, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Landeiro, V.L.; Magnusson, W.E.; Melo, A.S.; Espírito-Santo, H.M.; Bini, L.M. Spatial eigenfunction analyses in stream networks: Do watercourse and overland distances produce different results? Freshw. Biol. 2011, 56, 1184–1192. [Google Scholar] [CrossRef]
- Dias, M.S.; Cornu, J.F.; Oberdorff, T.; Lasso, C.A.; Tedesco, P.A. Natural fragmentation in river networks as a driver of speciation for freshwater fishes. Ecography 2013, 36, 683–689. [Google Scholar]
- Liu, Y.; Wang, Y.R.; Zhu, Q.; Li, Y.R.; Kang, B.; Chu, L.; Yan, Y.Z. Effects of low-head dams on fish assemblages in subtropical streams: Context dependence on species category and data type. River Res. Appl. 2019, 35, 396–404. [Google Scholar]
- Yang, Y.C.E.; Cai, X.; Herricks, E.E. Identification of hydrologic indicators related to fish diversity and abundance: A data mining approach for fish community analysis. Water Resour. Res. 2008, 44, W04412. [Google Scholar]
- Chevalier, M.; Comte, L.; Laffaille, P.; Grenouillet, G. Interactions between species attributes explain population dynamics in stream fishes under changing climate. Ecosphere 2018, 9, e02061. [Google Scholar] [CrossRef] [Green Version]
- Daufresne, M.; Boët, P. Climate change impacts on structure and diversity of fish communities in rivers. Glob. Chang. Biol. 2007, 13, 2467–2478. [Google Scholar]
- Piniewski, M.; Prudhomme, C.; Acreman, M.C.; Tyle, L.; Oglęcki, P.; Okruszko, T. Responses of fish and invertebrates to floods and droughts in Europe. Ecohydrology 2016, 10, e1793. [Google Scholar]
- Hughes, B.B.; Levey, M.D.; Fountain, M.C.; Carlisle, A.B.; Chavez, F.P.; Gleason, M.G. Climate mediates hypoxic stress on fish diversity and nursery function at the land–sea interface. Proc. Natl. Acad. Sci. USA 2015, 112, 8025–8030. [Google Scholar]
- Bassem, S.M. Water pollution and aquatic biodiversity. Biodivers. Int. J. 2020, 4, 10–16. [Google Scholar]
- Xenopoulos, M.A.; Lodge, D.M. Going with the flow: Using species-discharge relationships for forecast losses in fish biodiversity. Ecology 2006, 87, 1907–1914. [Google Scholar]
- Buisson, L.; Thuiller, W.; Lek, S.; Lim, P.; Grenouillet, G. Climate change hastens the turnover of stream fish assemblages. Glob. Chang. Biol. 2008, 14, 2232–2248. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Mclntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Zhao, L.J.; Chenoweth, E.L.; Li, J.; Liu, Q.G. Effects of dam structures on genetic diversity of freshwater fish Sinibrama macrops in Min River, China. Biochem. Syst. Ecol. 2016, 68, 216–222. [Google Scholar]
- Kang, B.; Deng, J.M.; Huang, X.X.; Chen, L.Q.; Feng, Y. Explaining freshwater fish biogeography: History versus environment versus species personality. Rev. Fish Biol. Fish. 2013, 23, 523–536. [Google Scholar] [CrossRef]
- Vitule, J.R.S.; Skóra, F.; Abilhoa, V. Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Divers. Distrib. 2012, 18, 111–120. [Google Scholar]
- Kang, B.; Deng, J.M.; Wang, Z.M.; Zhang, J. Transplantation of Icefish (Salangidae) in China: Glory or Disaster? Rev. Aquac. 2015, 7, 13–27. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.K.; Wang, X.M. Global distribution, entry routes, mechanisms and consequences of invasive freshwater fish. Biodivers. Sci. 2016, 24, 672–685. [Google Scholar]
- Wan, A.; Zhang, X.K.; Liu, Z.G.; Wang, H.L.; Chen, M.M.; Zhou, S.; Yu, D.P. Morphological characteristics of the green sunfish (Lepomis cyanellus) in Heigou creek, Ta-Pieh Mountains. Acta Hydrobiol. Sin. 2017, 41, 194–200. [Google Scholar]
Site | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.26 | 0.26 | 0.23 | 0.13 | 0.32 | 0.08 | 0.10 | 0.33 | 0.33 | 0.12 | 0.12 | 0.18 | 0.19 | 0.20 | 0.16 | 0.10 | 0.14 | 0.33 | 0.26 | 0.22 | 0.24 | 0.25 | 0.15 | 0.15 |
2 | 0.51 | 0.16 | 0.42 | 0.23 | 0.35 | 0.23 | 0.21 | 0.20 | 0.27 | 0.19 | 0.13 | 0.14 | 0.25 | 0.11 | 0.12 | 0.14 | 0.25 | 0.20 | 0.20 | 0.13 | 0.11 | 0.09 | 0.11 | 0.05 |
3 | 0.58 | 0.56 | 0.05 | 0.36 | 0.37 | 0.19 | 0.37 | 0.11 | 0.21 | 0.57 | 0.11 | 0.12 | 0.13 | 0.05 | 0.05 | 0.23 | 0.13 | 0.11 | 0.23 | 0.05 | 0.13 | 0.06 | 0.21 | 0.05 |
4 | 0.40 | 0.47 | 0.46 | 0.16 | 0.32 | 0.20 | 0.47 | 0.11 | 0.14 | 0.40 | 0.05 | 0.06 | 0.13 | 0.10 | 0.05 | 0.24 | 0.21 | 0.11 | 0.24 | 0.05 | 0.16 | 0.12 | 0.10 | 0.05 |
5 | 0.40 | 0.47 | 0.46 | 1.00 | 0.19 | 0.14 | 0.23 | 0.23 | 0.21 | 0.22 | 0.08 | 0.14 | 0.20 | 0.12 | 0.22 | 0.10 | 0.20 | 0.29 | 0.43 | 0.17 | 0.21 | 0.16 | 0.26 | 0.12 |
6 | 0.41 | 0.42 | 0.57 | 0.89 | 0.89 | 0.13 | 0.25 | 0.11 | 0.14 | 0.24 | 0.11 | 0.13 | 0.31 | 0.16 | 0.17 | 0.44 | 0.21 | 0.18 | 0.08 | 0.11 | 0.22 | 0.16 | 0.10 | 0.10 |
7 | 0.39 | 0.45 | 0.45 | 0.96 | 0.96 | 0.86 | 0.18 | 0.08 | 0.10 | 0.47 | 0.04 | 0.09 | 0.14 | 0.07 | 0.04 | 0.43 | 0.14 | 0.08 | 0.22 | 0.04 | 0.31 | 0.10 | 0.12 | 0.04 |
8 | 0.39 | 0.45 | 0.45 | 0.96 | 0.96 | 0.86 | 1.00 | 0.13 | 0.38 | 0.05 | 0.16 | 0.18 | 0.27 | 0.26 | 0.28 | 0.08 | 0.19 | 0.38 | 0.17 | 0.29 | 0.21 | 0.22 | 0.20 | 0.14 |
9 | 0.37 | 0.38 | 0.42 | 0.75 | 0.75 | 0.76 | 0.73 | 0.73 | 0.09 | 0.12 | 0.20 | 0.14 | 0.36 | 0.18 | 0.27 | 0.09 | 0.25 | 0.38 | 0.14 | 0.29 | 0.14 | 0.13 | 0.18 | 0.18 |
10 | 0.40 | 0.47 | 0.46 | 1.00 | 1.00 | 0.89 | 0.96 | 0.96 | 0.75 | 0.13 | 0.15 | 0.11 | 0.11 | 0.04 | 0.04 | 0.32 | 0.05 | 0.05 | 0.16 | 0.05 | 0.18 | 0.11 | 0.14 | 0.04 |
11 | 0.29 | 0.31 | 0.33 | 0.61 | 0.61 | 0.60 | 0.61 | 0.61 | 0.66 | 0.61 | 0.08 | 0.25 | 0.27 | 0.33 | 0.15 | 0.08 | 0.12 | 0.16 | 0.04 | 0.38 | 0.10 | 0.11 | 0.14 | 0.09 |
12 | 0.26 | 0.30 | 0.33 | 0.58 | 0.58 | 0.59 | 0.58 | 0.58 | 0.58 | 0.58 | 0.80 | 0.07 | 0.21 | 0.29 | 0.11 | 0.08 | 0.13 | 0.18 | 0.08 | 0.18 | 0.13 | 0.09 | 0.22 | 0.10 |
13 | 0.30 | 0.32 | 0.35 | 0.66 | 0.66 | 0.65 | 0.66 | 0.66 | 0.59 | 0.66 | 0.90 | 0.88 | 0.09 | 0.31 | 0.25 | 0.14 | 0.23 | 0.27 | 0.09 | 0.27 | 0.19 | 0.16 | 0.24 | 0.24 |
14 | 0.30 | 0.28 | 0.33 | 0.54 | 0.54 | 0.59 | 0.53 | 0.53 | 0.55 | 0.54 | 0.57 | 0.64 | 0.62 | 0.10 | 0.32 | 0.07 | 0.31 | 0.33 | 0.11 | 0.33 | 0.17 | 0.24 | 0.18 | 0.18 |
15 | 0.34 | 0.42 | 0.41 | 0.83 | 0.83 | 0.78 | 0.80 | 0.80 | 0.67 | 0.83 | 0.61 | 0.62 | 0.68 | 0.53 | 0.11 | 0.07 | 0.25 | 0.44 | 0.26 | 0.35 | 0.15 | 0.25 | 0.19 | 0.25 |
16 | 0.40 | 0.47 | 0.46 | 1.00 | 1.00 | 0.89 | 0.96 | 0.96 | 0.75 | 1.00 | 0.61 | 0.58 | 0.66 | 0.54 | 0.83 | 0.23 | 0.14 | 0.12 | 0.17 | 0.04 | 0.30 | 0.13 | 0.11 | 0.07 |
17 | 0.42 | 0.46 | 0.51 | 0.49 | 0.49 | 0.52 | 0.48 | 0.48 | 0.49 | 0.49 | 0.44 | 0.42 | 0.47 | 0.42 | 0.42 | 0.49 | 0.13 | 0.36 | 0.19 | 0.27 | 0.10 | 0.13 | 0.17 | 0.11 |
18 | 0.48 | 0.50 | 0.43 | 0.38 | 0.38 | 0.34 | 0.37 | 0.37 | 0.43 | 0.38 | 0.44 | 0.31 | 0.35 | 0.29 | 0.32 | 0.38 | 0.39 | 0.18 | 0.33 | 0.38 | 0.21 | 0.30 | 0.20 | 0.33 |
19 | 0.33 | 0.34 | 0.44 | 0.42 | 0.42 | 0.47 | 0.41 | 0.41 | 0.58 | 0.42 | 0.52 | 0.45 | 0.46 | 0.43 | 0.47 | 0.42 | 0.46 | 0.47 | 0.22 | 0.17 | 0.21 | 0.18 | 0.20 | 0.15 |
20 | 0.56 | 0.64 | 0.57 | 0.38 | 0.38 | 0.34 | 0.37 | 0.37 | 0.29 | 0.38 | 0.24 | 0.26 | 0.28 | 0.23 | 0.34 | 0.38 | 0.46 | 0.50 | 0.33 | 0.30 | 0.10 | 0.26 | 0.20 | 0.20 |
21 | 0.58 | 0.57 | 0.56 | 0.40 | 0.40 | 0.36 | 0.39 | 0.39 | 0.31 | 0.40 | 0.27 | 0.29 | 0.31 | 0.27 | 0.36 | 0.40 | 0.45 | 0.53 | 0.37 | 0.75 | 0.25 | 0.34 | 0.14 | 0.17 |
22 | 0.52 | 0.48 | 0.50 | 0.38 | 0.38 | 0.37 | 0.39 | 0.39 | 0.32 | 0.38 | 0.34 | 0.34 | 0.38 | 0.30 | 0.38 | 0.38 | 0.42 | 0.51 | 0.37 | 0.60 | 0.58 | 0.28 | 0.17 | 0.32 |
23 | 0.47 | 0.52 | 0.55 | 0.52 | 0.52 | 0.49 | 0.50 | 0.50 | 0.46 | 0.52 | 0.36 | 0.41 | 0.41 | 0.35 | 0.46 | 0.52 | 0.43 | 0.38 | 0.40 | 0.53 | 0.51 | 0.44 | 0.19 | 0.18 |
24 | 0.62 | 0.61 | 0.64 | 0.42 | 0.42 | 0.40 | 0.40 | 0.40 | 0.34 | 0.42 | 0.26 | 0.26 | 0.30 | 0.26 | 0.37 | 0.42 | 0.47 | 0.51 | 0.35 | 0.81 | 0.78 | 0.62 | 0.58 | 0.09 |
Species | English Name | Origin | Habitat | Feeding Habits | Reproduction | Threat |
---|---|---|---|---|---|---|
Ctenopharyngodon idella (Valenciennes, 1844) | Grass carp | Yangtze, China | Preferring standing water bodies with vegetation. Wide temperature 0–38 °C, hypoxia-tolerance. | Herbivorous, feeding on higher aquatic plants and submerged grasses, also detritus, insects and other invertebrates. | High fecundity | A pest because of the damages to submerged vegetation |
Megalobrama amblycephala Yih, 1955 | Wuchang bream | Yangtze, China | Preferring standing water bodies with vegetation. Temperate 10–20 °C. | Herbivorous, feeding on higher aquatic plants and submerged grasses, also zooplankton. | High fecundity | Not evaluated |
Oreochromis mossambicus (Peters, 1852) | Mozambique tilapia | Africa | Thriving in standing water. Extended temperature 8–42 °C, hypoxia-tolerance. | Omnivorous with high plasticity, mainly feeding on algae and phytoplankton, also zooplankton, small insects, and shrimps. | High fecundity | A most successful and vagile invader |
Hemibagrus macropterus Bleeker, 1870 | Chinese catfish | Yangtze, Pearl, China | Preferring running water with pebbly bottom. | Carnivorous, mainly feeding on benthic invertebrates. | Adhesive egg | Not evaluated |
Lepomis gulosus (Cuvier, 1829) | Warmouth | North America | Adapting to multiple habitat types. Wide temperature 1–38 °C. | Ominivorous, mainly feeding on plankton, auqatic insects, mollsca, and small fishes. | Multiple spawning, high fecundity | A successful and vagile invader |
Sinibotia superciliaris (Günther, 1892) | Golden Chinese loach | Yangtze, Upper Mekong, China | Preferring running water. | Carnivorous, mainly feeding on benthic invertebrates. | Single spawning | Not evaluated |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, W.; Lin, L.; Huang, X.; Liao, T.-Y.; Kang, B. Climate Change and Species Invasion Drive Decadal Variation in Fish Fauna in the Min River, China. Water 2020, 12, 1558. https://doi.org/10.3390/w12061558
Deng W, Lin L, Huang X, Liao T-Y, Kang B. Climate Change and Species Invasion Drive Decadal Variation in Fish Fauna in the Min River, China. Water. 2020; 12(6):1558. https://doi.org/10.3390/w12061558
Chicago/Turabian StyleDeng, Weide, Li Lin, Xiaoxia Huang, Te-Yu Liao, and Bin Kang. 2020. "Climate Change and Species Invasion Drive Decadal Variation in Fish Fauna in the Min River, China" Water 12, no. 6: 1558. https://doi.org/10.3390/w12061558
APA StyleDeng, W., Lin, L., Huang, X., Liao, T.-Y., & Kang, B. (2020). Climate Change and Species Invasion Drive Decadal Variation in Fish Fauna in the Min River, China. Water, 12(6), 1558. https://doi.org/10.3390/w12061558