Differences in the Effects of Storms on Dissolved Organic Carbon (DOC) in Boreal Lakes during an Early Summer Storm and an Autumn Storm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Lake Selection
2.2. Storm Events and Sample Collection
2.3. Analysis of DOC Concentration and Quality
2.4. Land Cover Data
2.5. Data Analysis
3. Results
3.1. Comparison of Responses Across Lakes and Seasons
3.2. Correlations between DOC Metrics and Lake Characteristics
3.3. Correlations between DOC Metrics and Land Cover
3.4. Effects of Storms on DOC Metrics, Lake Characteristics, and Land Cover
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Williamson, C.E.; Morris, D.P.; Pace, M.L.; Olson, O.G. Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnol. Oceanogr. 1999, 44, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceangr. 2009, 64, 2298–2314. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.; Nelson, S.J.; Saros, J.E. Paleolimnological evidence of the consequences of recent increased dissolved organic carbon (DOC) in lakes of the northeastern USA. J. Paleolimnol. 2017, 57, 19–35. [Google Scholar] [CrossRef]
- Snucins, E.; Gunn, J. Interannual variation in the thermal structure of clear and colored lakes. Limnol. Oceanogr. 2000, 45, 1647–1654. [Google Scholar] [CrossRef]
- Solomon, C.T.; Stuart, S.E.; Weidel, B.C.; Buffam, I.; Fork, M.L.; Karlsson, J.; Larsen, S.; Lennon, J.T.; Read, J.S.; Sadro, S.; et al. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: Current knowledge and future challenges. Ecosystems 2015, 18, 376–389. [Google Scholar] [CrossRef]
- Oliver, B.G.; Thurman, E.M.; Malcolm, R.I. The contribution of humic substances to the acidity of colored natural waters. Geochim. Cosmochim. Acta 1983, 47, 203–2035. [Google Scholar] [CrossRef]
- Evans, C.D.; Monteith, D.T.; Cooper, D.M. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ. Pollut. 2005, 137, 55–71. [Google Scholar] [CrossRef]
- Tranvik, L.J. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 1992, 229, 107–114. [Google Scholar] [CrossRef]
- Wetzel, R.G.; Hatcher, P.G.; Bianchi, T.S. Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol. Oceanogr. 1995, 40, 1369–1380. [Google Scholar] [CrossRef]
- Morris, D.P.; Zagarese, H.; Williamson, C.E.; Balseiro, E.G.; Hargreaves, B.R.; Modenutti, B.; Moeller, R.; Queimalinos, C. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 1995, 40, 1381–1391. [Google Scholar] [CrossRef] [Green Version]
- Cronan, C.S. Patterns of organic acid transport from forested watersheds to aquatic ecosystems. In Organic Acids in Aquatic Ecosystems; Perdue, E.M., Gjessing, E.T., Eds.; Wiley: Hoboken, NJ, USA, 1990; pp. 245–260. [Google Scholar]
- Vinvent, W.F.; Pienitz, R. Sensitivity of high-latitude freshwater ecosystems to global change: Temperature and solar ultraviolet radiation. Geosci. Can. 1997, 23, 231–236. [Google Scholar]
- Mopper, K.; Kieber, D.J. Photochemistry and the cycling of carbon, sulfur, nitrogen and phosphorus. In Biogeochemistry of Marine Organic Matter; Hansell, D., Carlson, C., Eds.; Academic Press: Cambridge, MA, USA, 2002; pp. 455–489. [Google Scholar]
- Lepistö, A.; Futter, M.N.; Kortelained, P. Almost 50 years of monitoring show that climate, not forestry, controls long-term organic carbon fluxes in a large boreal watershed. Glob. Change Biol. 2014, 20, 1225–1237. [Google Scholar] [CrossRef] [PubMed]
- Pagano, T.; Bida, M.; Kenny, J.E. Trends in levels of allochthonous dissolved organic carbon in natural water: A review of potential mechanisms under a changing climate. Water 2014, 6, 2862–2897. [Google Scholar] [CrossRef] [Green Version]
- Weyhenmeyer, G.A.; Froberg, M.; Karltun, E.; Khalili, M.; Kothawala, D.; Temnerud, J.; Tranvik, L.J. Selective decay of terrestrial organic carbon during transport from land to sea. Glob. Chang. Biol. 2012, 18, 349–355. [Google Scholar] [CrossRef]
- Fasching, C.; Ulseth, A.J.; Schelker, J.; Steniczka, G.; Battin, T.J. Hydrology controls dissolved organic matter export and composition in an Alpine stream and its hyporheic zone. Limnol. Oceanogr. 2016, 61, 558–571. [Google Scholar] [CrossRef] [Green Version]
- Monteith, D.T.; Stoddard, J.L.; Evans, C.D.; de Wit, H.A.; Forsius, M.; Hogasen, T.; Wilander, A.; Skjelkvale, B.L.; Jeffries, D.S.; Vuorenmaa, J.; et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 2007, 450, 537–540. [Google Scholar] [CrossRef]
- Aulló-Maestro, M.E.; Hunter, P.; Spyrakos, E.; Mercatoris, P.; Kovács, A.; Horváth, H.; Preston, T.; Présing, T.; Palenzuela, J.T.; Tyler, A. Spatio-seasonal variability of chromophoric dissolved organic matter absorption and responses to photobleaching in a large shallow temperate lake. Biogeosciences 2017, 14, 1215–1233. [Google Scholar] [CrossRef] [Green Version]
- Groisman, P.Y.; Karl, T.R.; Easterling, D.R.; Knight, R.W.; Jamason, P.F.; Hennessy, K.J.; Suppiah, R.; Page, C.M.; Wibig, J.; Fortuniak, K.; et al. Changes in the probability of heavy precipitation: Important indicators of climate change. Clim. Change 1999, 42, 243–283. [Google Scholar] [CrossRef]
- Jentsch, A.; Beierkuhnlein, C. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. C.R. Geosci. 2008, 340, 621–628. [Google Scholar] [CrossRef]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated analyses of temperatures and precipitation extreme indicies since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. 2013, 118, 2098–2118. [Google Scholar]
- Easterling, D.R.; Kunkel, K.E.; Arnold, J.R.; Knutson, T.; LeGrande, A.; Leung, L.R.; Vose, R.S.; Waliser, D.E.; Wehner, M.F. Precipitation change in the United States. In Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume 1, pp. 207–230. [Google Scholar] [CrossRef]
- Madsen, T.; Figdor, E. When it Rains, it Pours: Global Warming and the Rising Frequency of Extreme Precipitation in the United States; Environment America Research and Policy Center: Denver, CO, USA, 2007. [Google Scholar]
- Spierre, S.G.; Wake, C.; Guttekk, R.; Hurtt, F.; Kelly, T.; Markham, A.; Schaefer, D.; VanDeveer, S. Trends in Extreme Precipitation Events for Northeastern United States 1948–2007; Carbon Solutions New England; University of New Hampshire: Durham, NH, USA, 2010. [Google Scholar]
- Madsen, T.; Wilcox, N. When It Rains, It Pours: Global Warming and the Increase in Extreme Precipitation from 1948 to 2011; Environment America Research and Policy Center: Denver, CO, USA, 2012. [Google Scholar]
- Melillo, J.M.; Richmond, T.C.; Yohe, G.W. (Eds.) Climate Change Impacts in the United States: The Third National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2014; p. 841. [CrossRef]
- Frei, A.; Kunkel, K.E.; Matonse, A. The seasonal nature of extreme hydrological events in the northeastern United States. J. Hydrometeorol. 2015, 16, 2065–2085. [Google Scholar] [CrossRef]
- Huang, H.; Winter, J.M.; Osterberg, E.C.; Horton, R.M.; Beckage, B. Total and extreme precipitation changes over the northeastern United States. J. Hydrometeorol. 2017, 18, 1783–1798. [Google Scholar] [CrossRef]
- Huang, H.; Winter, J.M.; Osterberg, E.C. Mechanisms of abrupt extreme precipitation change over the northeastern United States. J. Geophys. Res. Atmos. 2018, 123, 7179–7192. [Google Scholar] [CrossRef]
- Reichwaldt, E.S.; Ghadouani, A. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: Between simplistic scenarios and complex dynamics. Water Res. 2012, 46, 1372–1393. [Google Scholar] [CrossRef]
- Morabito, G.; Rogora, M.; Austoni, M.; Ciampittiello, M. Could the extreme meteorological events in Lake Maggiore watershed determine a climate-driven eutrophication process? Hydrobiologia 2018, 824, 163–175. [Google Scholar] [CrossRef]
- Woodward, G.; Bonada, N.; Brown, L.E.; Death, R.G.; Durance, I.; Gray, C.; Hladyz, S.; Ledger, M.E.; Milner, A.M.; Ormerod, S.J.; et al. The effects of climatic fluctuations and extreme events on running water ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150274. [Google Scholar] [CrossRef] [Green Version]
- Warner, K.A.; Saros, J.E. Variable responses of dissolved organic carbon to precipitation events in boreal drining water lakes. Water Res. 2019, 156, 315–326. [Google Scholar] [CrossRef]
- Williamson, C.E.; Brentrup, J.A.; Zhang, J.; Renwick, W.H.; Hargreaves, B.R.; Knoll, L.B.; Overholt, E.P.; Rose, K.C. Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change. Limnol. Oceanogr. 2014, 59, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Williamson, C.E.; Overholt, E.P.; Brentrup, J.A.; Pilla, R.M.; Leach, T.H.; Schladow, S.G.; Warren, J.D.; Urmy, S.S.; Sadro, S.; Chandra, S.; et al. Sentinal responses to droughts, wildfires, and floods: Effects of UV radiation on lakes and their ecosystem services. Front. Ecol. Environ. 2016, 14, 102–109. [Google Scholar] [CrossRef]
- Howarth, M.E.; Thorncroft, C.D.; Bosart, L.F. Changes in extreme precipitation in the Northeast United States: 1979–2014. J. Hydrometeorol. 2019, 20, 673–689. [Google Scholar] [CrossRef]
- Huang, B.; Shin, C.-S. Predictive skill and predictable patterns of the U.S. seasonal precipitation in CFSv2 reforecasts of 60 years (1958–2017). J. Clim. 2019, 32, 8603–8637. [Google Scholar] [CrossRef]
- Hudson, J.J.; Dillon, P.J.; Somers, K.M. Long-term patterns in dissolved organic carbon in boreal lakes: The role of incident radiation, precipitation, air temperature, southern oscillation and acid deposition. Hydrol. Earth Syst. Sc. 2003, 7, 390–398. [Google Scholar] [CrossRef]
- Dillon, P.J.; Molot, L.A. Effect of landscape form on export of dissolved organic carbon, iron, and phosphorus from forested stream catchments. Water Resour. Res. 1997, 33, 2591–2600. [Google Scholar] [CrossRef]
- Tranvik, L.J. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 1998, 16, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Gavin, A.L.; Nelson, S.J.; Klemmer, A.J.; Fernandez, I.J.; Strock, K.E.; McDowell, W.H. Acidification and climate linkages to increased dissolved organic carbon in high-elevation lakes. Water Resour. Res. 2018, 54, 5376–5393. [Google Scholar] [CrossRef]
- Couture, S.; Houle, D.; Gagnon, C. Increases of dissolved organic carbon in temperate and boreal lakes in Quebec, Canada. Environ. Sci. Pollut. Res. 2012, 19, 361–371. [Google Scholar] [CrossRef]
- Urban, N.R.; Bayley, S.E.; Eisenreich, S.J. Export of dissolved organic carbon and acidity from peatlands. Water Resour. Res. 1989, 25, 1619–1628. [Google Scholar] [CrossRef]
- Gennings, C.; Molot, L.A.; Dillon, P.J. Enhanced photochemical loss of organic carbon in acidic waters. Biogeochemistry 2001, 52, 339–354. [Google Scholar] [CrossRef]
- Molot, L.A.; Dillon, P.J. Photolytic regulation of dissolved organic carbon in northern lakes. Glob. Biogeochem. Cycles 1997, 11, 357–365. [Google Scholar] [CrossRef]
- Fee, E.J.; Hecky, R.E.; Kasian, S.E.M.; Cruikshank, D.R. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol. Oceanogr. 1996, 41, 912–920. [Google Scholar] [CrossRef]
- Read, J.S.; Rose, K.C. Physical responses of small temperate lakes to variation in dissolved organic carbon concentrations. Limnol. Oceanogr. 2013, 58, 921–931. [Google Scholar] [CrossRef]
- Schindler, D.W. A hypothesis to explain differences and similarities among lakes in the Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Board. Can. 1971, 28, 295–301. [Google Scholar] [CrossRef]
- Xenopoulos, M.A.; Lodge, D.M.; Frentress, J.; Kreps, T.A.; Bridgham, S.D.; Grossman, E.; Jackson, C.J. Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnol. Oceanogr. 2003, 48, 2321–2344. [Google Scholar] [CrossRef] [Green Version]
- Temnerud, J.; Hytteborn, J.K.; Futter, M.N.; Kohler, S.J. Evaluating common drivers for water color, iron, and organic carbon in Swedish watercourses. AMBIO 2014, 43, 30–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.V.-M.; Lee, M.-H.; Hur, J.; Schlautman, M.A. Variations in spectroscopic characteristics and disinfection byproduct formation potentials of dissolved organic matter for two contrasting storm events. J. Hydrol. 2013, 481, 132–142. [Google Scholar] [CrossRef]
- Chen, M.; He, W.; Choi, I.; Hur, J. Tracking the monthly changes of dissolved organic matter composition in a newly constructed reservoir and its tributaries during the initial impounding period. Environ. Sci. Pollut. Res. 2016, 23, 1274–1283. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Swamikannu, X.; Radulescu, D.; Kim, S.J.; Stenstrom, M.K. Design of stormwater monitoring programs. Water Res. 2007, 41, 4186–4196. [Google Scholar] [CrossRef]
- Hinton, M.J.; Schiff, S.L.; English, M.C. The significance of storms for the concentration and export of dissolved organic carbon from two Precambrian Shield catchments. Biogeochemistry 1997, 36, 147–165. [Google Scholar] [CrossRef]
- Berggren, M.; Klause, M.; Selvam, B.P.; Strom, L.; Laudon, H.; Jansson, M.; Karlsson, J. Quality transformation of dissolved organic carbon during water transit through lakes: Contrasting controls by photochemical and biological processes. Biogeosciences 2018, 15, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Gilman, R.A.; Chapman, C.A.; Lowell, T.V.; Borns, H.W., Jr. The Geology of Mount Desert Island: A Visitors Guide to the Geology of Acadia National Park; Maine Geological Survey: Orono, ME, USA; Department of Conservation: Augusta, ME, USA, 1998; pp. 1–50.
- Strock, K.E.; Theodore, N.; Gawley, W.G.; Ellsworth, A.C.; Saros, J.E. Increasing dissolved organic carbon concentrations in northern boreal lakes: Implications for lake water transparency and thermal structure. J. Geophys. Res. Biogeosci. 2017, 122, 1022–1035. [Google Scholar] [CrossRef]
- Karl, T.R.; Knight, R.W.; Plummer, N. Trends in high-frequency climate variability in the twentieth century. Nature 1995, 377, 217–220. [Google Scholar] [CrossRef]
- Kunkel, K.E. North American trends in precipitation. Nat. Hazards 2003, 29, 291–305. [Google Scholar] [CrossRef]
- Fernandez, I.J.; Schmitt, C.V.; Birkel, S.D.; Stancioff, E.; Pershing, A.J.; Kelley, J.T.; Runge, J.A.; Jacobson, G.L.; Mayewski, P.A. Maine’s Climate Future: 2015 Update; University of Maine: Orono, ME, USA, 2015; p. 24. [Google Scholar]
- Walsh, J.J.; Weisberg, R.H.; Dieterle, D.A.; He, R.; Darrow, B.P.; Jolliff, J.K.; Lester, K.M.; Vargo, G.A.; Kirkpatrick, G.J.; Fanning, K.A.; et al. Phytoplankton response to intrusions of slope water on the West Florida Shelf: Models and observations. J. Geophys. Res. Ocean. 2003, 108, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef] [Green Version]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2011; p. 662. [Google Scholar]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.R.; Fugii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef]
- Vachon, D.; Lapierre, J.F.; del Giorgio, P.A. Seasonality of photochemical dissolved organic carbon mineralization and its relative contribution to pelagic CO2 production in northern lakes. J. Geophys. Res. Biogeosci. 2016, 121, 864–878. [Google Scholar] [CrossRef] [Green Version]
- SanClements, M.D.; Oelsner, G.P.; McKnight, D.M.; Stoddard, J.L.; Nelson, S.J. New insights into the source of decadal increases of dissolved organic matter in acid-sensitive lakes of the Northeastern United States. Environ. Sci. Technol. 2012, 46, 3212–3219. [Google Scholar] [CrossRef]
- Hargreaves, B.R. Water column optics and penetration of UVR. In UV Effects in Aquatic Organisms and Ecosystems. Comprehensive Series in Photochemistry and Photobiology; Helbling, E.W., Zagarese, H.E., Eds.; Royal Society of Chemistry: London, UK, 2003; pp. 59–105. [Google Scholar]
- Lu, Y.; Bauer, J.E.; Canuel, E.A.; Yamashita, Y.; Chamber, R.M. Photochemical and bacterial alteration of dissolved organic matter in temperate headwater streams associated with different land use. J. Geophys. Res. Biogeo. 2013, 118, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Guillemette, F.; del Giorgio, P.A. Simultaneous consumption and production of fluorescent dissolved organic matter by lake bacterioplankton. Environ. Microbiol. 2012, 14, 1432–1443. [Google Scholar] [CrossRef]
- Khomotova, T.E.; Shirshova, L.T.; Tinz, S.; Rolland, W.; Richter, J. Mobilization of DOC from sandy loamy soils under different land use (Lower Saxony, Germany). Plant Soil 2000, 219, 13–19. [Google Scholar] [CrossRef]
- Ågren, A.; Buffam, I.; Jansson, M.; Laudon, H. Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export. J. Geophys. Res. 2007, G03003. [Google Scholar] [CrossRef] [Green Version]
- Osburn, C.L.; O’Sullivan, D.W.; Boyd, T.J. Increases in the longwave photobleaching of chromophoric dissolved organic carbon in coastal waters. Limnol. Oceangr. 2009, 54, 145–159. [Google Scholar] [CrossRef]
- Yamashita, Y.; Nosaka, Y.; Suzuki, K.; Ogawa, H.; Takahashi, K.; Saito, H. Photobleaching as a factor controlling spectral characteristics of chromophoric dissolved organic matter in open ocean. Biogeosciences 2013, 10, 7207–7217. [Google Scholar] [CrossRef] [Green Version]
Lake | Watershed Area (km2) | Lake Area (km2) | Watershed Area: Lake Area | Volume (×106 m3) | Maximum Depth (m) | Residence Time (years) | Mean DOC (mg L−1) |
---|---|---|---|---|---|---|---|
Jordan | 4.0 | 0.8 | 5.3 | 17.0 | 46 | 5.9 | 1.9 |
Bubble | 1.8 | 0.1 | 13.5 | 0.6 | 12 | 0.5 | 2.3 |
Eagle | 5.6 | 1.9 | 3.0 | 22.4 | 34 | 3.8 | 2.1 |
Echo | 5.1 | 1.0 | 5.3 | 6.2 | 20 | 1.6 | 3.0 |
Long | 13.1 | 3.8 | 3.4 | 33.4 | 34 | 3.1 | 3.1 |
Seal Cove | 7.6 | 1.0 | 7.3 | 3.9 | 13 | 0.5 | 4.7 |
Season | Storm Dates | Sampling Dates | Storm Total Precipitation (mm) | ||
---|---|---|---|---|---|
Pre | P1 | P2 | |||
Early Summer | 6 June 2016 | 4 June 2016 | 7 June 2016 | 10 June 2016 | 25.9 |
Autumn | 21 October 2016 | 19 October 2016 | 23 October 2016 | 25 October 2016 | 30.2 |
Lake | Slope (Degrees) | Landcover (%) | ||||||
---|---|---|---|---|---|---|---|---|
Developed | Deciduous | Evergreen | Mixed Forest | Scrub-Shrub | Herbaceous | Wetlands | ||
Jordan | 47.5 | 6.2 | 10.0 | 34.7 | 13.6 | 24.7 | 8.2 | 2.6 |
Bubble | 17.7 | 3.2 | 7.8 | 48.0 | 15.3 | 17.6 | 4.6 | 3.6 |
Eagle | 45.1 | 12.0 | 9.8 | 34.3 | 29.4 | 8.4 | 1.6 | 4.6 |
Echo | 23.4 | 9.8 | 1.1 | 64.4 | 17.8 | 1.8 | 1.4 | 3.6 |
Long | 27.7 | 3.4 | 3.5 | 64.2 | 17.5 | 2.4 | 0.4 | 8.6 |
Seal Cove | 17.1 | 4.1 | 0.8 | 59.2 | 16.9 | 4.8 | 3.2 | 11.0 |
DOC Metric | Early Summer | Autumn | ||
---|---|---|---|---|
P1 | P2 | P1 | P2 | |
[DOC] | WA:LA (r = 0.76; p = 0.08) | |||
SUVA254 | Residence Time (r = −0.76; p = 0.08) | |||
a*320 | Max Depth (r = −0.75; p = 0.08) Residence Time (r = −0.84; p = 0.04) | WA:LA (r = 0.84; p = 0.04) | ||
a*380 | Residence Time (r = −0.79; p = 0.06) | |||
E2:E3 | Max Depth (r = 0.80; p = 0.05) Residence Time (r = 0.76; p = 0.08) | |||
S275–295 | Max Depth (r = 0.77; p = 0.07) Residence Time (r = 0.85; p = 0.03) | WA:LA (r = −0.74; p = 0.09) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warner, K.A.; Fowler, R.A.; Saros, J.E. Differences in the Effects of Storms on Dissolved Organic Carbon (DOC) in Boreal Lakes during an Early Summer Storm and an Autumn Storm. Water 2020, 12, 1452. https://doi.org/10.3390/w12051452
Warner KA, Fowler RA, Saros JE. Differences in the Effects of Storms on Dissolved Organic Carbon (DOC) in Boreal Lakes during an Early Summer Storm and an Autumn Storm. Water. 2020; 12(5):1452. https://doi.org/10.3390/w12051452
Chicago/Turabian StyleWarner, Kate A., Rachel A. Fowler, and Jasmine E. Saros. 2020. "Differences in the Effects of Storms on Dissolved Organic Carbon (DOC) in Boreal Lakes during an Early Summer Storm and an Autumn Storm" Water 12, no. 5: 1452. https://doi.org/10.3390/w12051452