A Zero-Liquid Discharge Model for a Transient Solar-Powered Desalination System for Greenhouse
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Greenhouse in UK
3.2. Greenhouse in Egypt
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hassan, G.E.; Salah, A.H.; Fath, H.; Elhelw, M.; Hassan, A.M.; Saqr, K.M. Optimum operational performance of a new stand-alone agricultural greenhouse with integrated-TPV solar panels. Sol. Energy 2016, 136, 303–316. [Google Scholar] [CrossRef]
- Akrami, M.; Salah, A.H.; Javadi, A.; Fath, H.; Hassanein, M.; Farmani, R.; Dibaj, M.; Negm, N.A. Towards a Sustainable Greenhouse: Review of Trends and Emerging Practices in Analysing Greenhouse Ventilation Requirements to Sustain Maximum Agricultural Yield. Sustainability 2020, 12, 2794. [Google Scholar] [CrossRef]
- Akrami, M.; Javadi, A.; Hassanein, M.; Farmani, R.; Dibaj, M.; Tabor, G.R.; Negm, N.A. Study of the Effects of Vent Configuration on Mono-Span Greenhouse Ventilation Using Computational Fluid Dynamics. Sustainability 2020, 12, 986. [Google Scholar] [CrossRef]
- Sablani, S.; Goosen, M.; Paton, C.; Shayya, W.; Al-Hinai, H. Simulation of fresh water production using a humidification-dehumidification seawater greenhouse. Desalination 2003, 159, 283–288. [Google Scholar] [CrossRef]
- Goosen, M.; Sablani, S.; Paton, C.; Perret, J.; Al-Nuaimi, A.; Haffar, I.; Al-Hinai, H.; Shayya, W. Solar energy desalination for arid coastal regions: Development of a humidification–dehumidification seawater greenhouse. Sol. Energy 2003, 75, 413–419. [Google Scholar] [CrossRef]
- Zarei, T.; Behyad, R.; Abedini, E. Study on parameters effective on the performance of a humidification-dehumidification seawater greenhouse using support vector regression. Desalination 2018, 435, 235–245. [Google Scholar] [CrossRef]
- Yunis, H.; Elad, Y.; Mahrer, Y. Effects of air temperature, relative humidity and canopy wetness on gray mold of cucumbers in unheated greenhouses. Phytoparasitica 1990, 18, 203–215. [Google Scholar] [CrossRef]
- Fernández, M.D.; Bonachela, S.; Orgaz, F.; Thompson, R.B.; Lopez, J.C.; Granados, M.R.; Gallardo, M.; Fereres, E.; Bonachela, S. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig. Sci. 2010, 28, 497–509. [Google Scholar] [CrossRef]
- Rizzuti, L.; Ettouney, H.M.; Cipollina, A. Solar Desalination for the 21st Century: A Review of Modern Technologies and Researches on Desalination Coupled to Renewable Energies; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- Siddiqui, O.; Dincer, I. Examination of a new solar-based integrated system for desalination, electricity generation and hydrogen production. Sol. Energy 2018, 163, 224–234. [Google Scholar] [CrossRef]
- Ahmadvand, S.; Abbasi, B.; Azarfar, B.; Elhashimi, M.; Zhang, X.; Abbasi, B. Looking Beyond Energy Efficiency: An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination. Water 2019, 11, 696. [Google Scholar] [CrossRef]
- Ranade, V.V.; Bhandari, V.M. Industrial Wastewater Treatment, Recycling, and Reuse; Elsevier BV: Amsterdam, The Netherland, 2014; pp. 1–80. [Google Scholar]
- Tong, T.; Elimelech, M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2016, 50, 6846–6855. [Google Scholar] [CrossRef] [PubMed]
- Burn, S.; Hoang, M.; Zarzo, D.; Olewniak, F.; Campos, E.; Bolto, B.; Barron, O. Desalination techniques—A review of the opportunities for desalination in agriculture. Desalination 2015, 364, 2–16. [Google Scholar] [CrossRef]
- Sauvet-Goichon, B. Ashkelon desalination plant—A successful challenge. Desalination 2007, 203, 75–81. [Google Scholar] [CrossRef]
- Hsu, S.; Cheng, K.; Chiou, J. Seawater desalination by direct contact membrane distillation. Desalination 2002, 143, 279–287. [Google Scholar] [CrossRef]
- Joyce, A.; Loureiro, D.; Rodrigues, C.; Castro, S. Small reverse osmosis units using PV systems for water purification in rural places. Desalination 2001, 137, 39–44. [Google Scholar] [CrossRef]
- Manikandan, V.; Shanmugasundaram, K.; Shanmugan, S.; Janarthanan, B.; Chandrasekaran, J. Wick type solar stills: A review. Renew. Sustain. Energy Rev. 2013, 20, 322–335. [Google Scholar] [CrossRef]
- Edalatpour, M.; Aryana, K.; Kianifar, A.; Tiwari, G.; Mahian, O.; Wongwises, S. Solar stills: A review of the latest developments in numerical simulations. Sol. Energy 2016, 135, 897–922. [Google Scholar] [CrossRef]
- Cooper, P. The maximum efficiency of single-effect solar stills. Sol. Energy 1973, 15, 205–217. [Google Scholar] [CrossRef]
- Montoya-Marquez, O.; Flores-Prieto, J.J. The Effect of the Angle of Inclination on the Efficiency in a Medium-Temperature Flat Plate Solar Collector. Energies 2017, 10, 71. [Google Scholar] [CrossRef]
- Poblete, R.; Salihoğlu, G.; Salihoğlu, N.K. Investigation of the factors influencing the efficiency of a solar still combined with a solar collector. Desalin. Water Treat. 2016, 57, 1–10. [Google Scholar] [CrossRef]
- Sathyamurthy, R.; El-Agouz, S.; Nagarajan, P.K.; Subramani, J.; Arunkumar, T.; MageshBabu, D.; Madhu, B.; Bharathwaaj, R.; Prakash, N. A Review of integrating solar collectors to solar still. Renew. Sustain. Energy Rev. 2017, 77, 1069–1097. [Google Scholar] [CrossRef]
- Postel, S.L.; Daily, G.C.; Ehrlich, P.R. Human Appropriation of Renewable Fresh Water. Science 1996, 271, 785–788. [Google Scholar] [CrossRef]
- Qiblawey, H.; Banat, F. Solar thermal desalination technologies. Desalination 2008, 220, 633–644. [Google Scholar] [CrossRef]
- Kabeel, A.; Bassuoni, M.; Rozza, M. Performance study of an innovative heating technique for a modified solar still. Sci. Iran. 2017, 25, 721–727. [Google Scholar] [CrossRef]
- Mashaly, A.; Alazba, A.; Al-Awaadh, A.; Mattar, M.A. Predictive model for assessing and optimizing solar still performance using artificial neural network under hyper arid environment. Sol. Energy 2015, 118, 41–58. [Google Scholar] [CrossRef]
- Eldalil, K.M. Improving the performance of solar still using vibratory harmonic effect. Desalination 2010, 251, 3–11. [Google Scholar] [CrossRef]
- Jankowski, P.; Garstecki, P. Stable hydrophilic surface of polycarbonate. Sens. Actuators B Chem. 2016, 226, 151–155. [Google Scholar] [CrossRef]
- Coffey, J.; Duddy, J. Self Cleaning, Tubular Solar Still. Google Patents Patent 3,785,931, 15 January 1974. Available online: https://patents.google.com/patent/US3785931A/en?q=Self+Cleaning%2c+Tubular+Solar+Still.&oq=Self+Cleaning%2c+Tubular+Solar+Still (accessed on 10 May 2020).
- Turton, J.; Brown, R. A comparison of a numerical model of radiation fog with detailed observations. Q. J. R. Meteorol. Soc. 1987, 113, 37–54. [Google Scholar] [CrossRef]
- Pillai, R.; Libin, A.T.; Mani, M. Study into solar-still performance under sealed and unsealed conditions. Int. J. Low Carbon Technol. 2013, 10, 354–364. [Google Scholar] [CrossRef]
- Dev, R.; Abdul-Wahab, S.A.; Tiwari, G. Performance study of the inverted absorber solar still with water depth and total dissolved solid. Appl. Energy 2011, 88, 252–264. [Google Scholar] [CrossRef]
- Radhwan, A.M. Transient analysis of a stepped solar still for heating and humidifying greenhouses. Desalination 2004, 161, 89–97. [Google Scholar] [CrossRef]
- Al-Karaghouli, A.; Alnaser, W. Performances of single and double basin solar-stills. Appl. Energy 2004, 78, 347–354. [Google Scholar] [CrossRef]
- Blaga, A. Use of plastics in solar energy applications. Sol. Energy 1978, 21, 331–338. [Google Scholar] [CrossRef][Green Version]
- Ahmed, S. Study of single-effect solar still with an internal condenser. Sol. Wind. Technol. 1988, 5, 637–643. [Google Scholar] [CrossRef]
- Maalej, A. Solar still performance. Desalination 1991, 82, 197–205. [Google Scholar] [CrossRef]
- Sharshir, S.; Yang, N.; Peng, G.; Kabeel, A. Factors affecting solar stills productivity and improvement techniques: A detailed review. Appl. Therm. Eng. 2016, 100, 267–284. [Google Scholar] [CrossRef]
- Tanaka, H. Tilted wick solar still with flat plate bottom reflector. Desalination 2011, 273, 405–413. [Google Scholar] [CrossRef]
- Tanaka, H.; Nakatake, Y. Improvement of the tilted wick solar still by using a flat plate reflector. Desalination 2007, 216, 139–146. [Google Scholar] [CrossRef]
- Crow, R.M.; Osczevski, R.J. The Interaction of Water with Fabrics. Text. Res. J. 1998, 68, 280–288. [Google Scholar] [CrossRef]
- Omara, Z.; Eltawil, M.A.; Elnashar, E.A. A new hybrid desalination system using wicks/solar still and evacuated solar water heater. Desalination 2013, 325, 56–64. [Google Scholar] [CrossRef]
- Mahdi, J.T. An Experimental and Theoretical Investigation of a Wick-Type Solar Still for Water Desalination. Ph.D. Thesis, Brunel University School of Engineering and Design, Brunel, UK, 1992. [Google Scholar]
- Kofler, P.; Herten, A.; Heinrich, D.; Bottoni, G.; Hasler, M.; Faulhaber, M.; Bechtold, T.; Nachbauer, W.; Burtscher, M. Viscose as an alternative to aramid in workwear: Influence on endurance performance, cooling, and comfort. Text. Res. J. 2013, 83, 2085–2092. [Google Scholar] [CrossRef]
- Narayan, G.P.; Sharqawy, M.H.; Summers, E.K.; Zubair, S.M.; Antar, M. The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production. Renew. Sustain. Energy Rev. 2010, 14, 1187–1201. [Google Scholar] [CrossRef]
- Chehayeb, K.M.; Narayan, G.P.; Zubair, S.M. Thermodynamic balancing of a fixed-size two-stage humidification dehumidification desalination system. Desalination 2015, 369, 125–139. [Google Scholar] [CrossRef]
- Xu, L.; Chen, Y.-P.; Wu, P.-H.; Huang, B.-J. Humidification–Dehumidification (HDH) Desalination System with Air-Cooling Condenser and Cellulose Evaporative Pad. Water 2020, 12, 142. [Google Scholar] [CrossRef]
- Yıldırım, C.; Yildirim, C.; Solmuş, I. A parametric study on a humidification–dehumidification (HDH) desalination unit powered by solar air and water heaters. Energy Convers. Manag. 2014, 86, 568–575. [Google Scholar] [CrossRef]
- Giwa, A.; Fath, H.E.; Hasan, S.W. Humidification–dehumidification desalination process driven by photovoltaic thermal energy recovery (PV-HDH) for small-scale sustainable water and power production. Desalination 2016, 377, 163–171. [Google Scholar] [CrossRef]
- Ahmed, M.; Shayya, W.H.; Hoey, D.; Mahendran, A.; Morris, R.; Al-Handaly, J. Use of evaporation ponds for brine disposal in desalination plants. Desalination 2000, 130, 155–168. [Google Scholar] [CrossRef]
- Sorgeloos, P.; Bossuyt, E.; Laviña, E.; Baeza-Mesa, M.; Persoone, G. Decapsulation of Artemia cysts: A simple technique for the improvement of the use of brine shrimp in aquaculture. Aquaculture 1977, 12, 311–315. [Google Scholar] [CrossRef]
- Agh, N.; Van Stappen, G.; Bossier, P.; Sepehri, H.; Lotfi, V.; Rouhani, S.R.; Sorgeloos, P. Effects of salinity on survival, growth, reproductive and life span characteristics of Artemia populations from Urmia Lake and neighboring lagoons. Pak. J. Boil. Sci. 2008, 11, 164–172. [Google Scholar] [CrossRef]
- Esen, M.; Yuksel, T. Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy Build. 2013, 65, 340–351. [Google Scholar] [CrossRef]
- Yildirim, N.; Bilir, L. Evaluation of a hybrid system for a nearly zero energy greenhouse. Energy Convers. Manag. 2017, 148, 1278–1290. [Google Scholar] [CrossRef]
- Jolliet, O.; Danloy, L.; Gay, J.-B.; Munday, G.; Reist, A. HORTICERN: An improved static model for predicting the energy consumption of a greenhouse. Agric. For. Meteorol. 1991, 55, 265–294. [Google Scholar] [CrossRef]
- Davies, P.; Hossain, A. Development of an integrated reverse osmosis-greenhouse system driven by solar photovoltaic generators. Desalin. Water Treat. 2010, 22, 161–173. [Google Scholar] [CrossRef]
- Davies, P.; Hossain, A.; Vasudevan, P. Stand-alone groundwater desalination system using reverse osmosis combined with a cooled greenhouse for use in arid and semi-arid zones of India. Desalin. Water Treat. 2009, 5, 223–234. [Google Scholar] [CrossRef]
- Farrell, E.; Hassan, M.I.; Tufa, R.A.; Tuomiranta, A.; Avci, A.H.; Politano, A.; Curcio, E.; Arafat, H.A. Reverse electrodialysis powered greenhouse concept for water- and energy-self-sufficient agriculture. Appl. Energy 2017, 187, 390–409. [Google Scholar] [CrossRef]
- Henderson-Sellers, B. A new formula for latent heat of vaporization of water as a function of temperature. Q. J. R. Meteorol. Soc. 1984, 110, 1186–1190. [Google Scholar] [CrossRef]
- Salah, A.H.; Hassan, G.E.; Fath, H.; Elhelw, M.; Elsherbiny, S. Analytical investigation of different operational scenarios of a novel greenhouse combined with solar stills. Appl. Therm. Eng. 2017, 122, 297–310. [Google Scholar] [CrossRef]
- Amarananwatana, P.; Sorapipatana, C. An assessment of the ASHRAE clear sky model for irradiance prediction in Thailand Nuntiya. Asian J. Energy Environ. 2007, 8, 523–532. [Google Scholar]
- American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE). ASHRAE Handbook of Fundamentals; ASHRAE: Atlanta, GA, USA, 1993. [Google Scholar]
- Smith, H.J. Weather underground. Science 2015, 348, 1328. [Google Scholar] [CrossRef][Green Version]
- Mohamed, A.; El-Minshawy, N. Theoretical investigation of solar humidification–dehumidification desalination system using parabolic trough concentrators. Energy Convers. Manag. 2011, 52, 3112–3119. [Google Scholar] [CrossRef]
- Caldera, U.; Bogdanov, D.; Afanasyeva, S.; Breyer, C. Role of Seawater Desalination in the Management of an Integrated Water and 100% Renewable Energy Based Power Sector in Saudi Arabia. Water 2017, 10, 3. [Google Scholar] [CrossRef]
- Trieb, F.; Müller-Steinhagen, H. Concentrating solar power for seawater desalination in the Middle East and North Africa. Desalination 2008, 220, 165–183. [Google Scholar] [CrossRef]
- Radhwan, A.M.; Fath, H.E. Thermal performance of greenhouses with a built-in solar distillation system Experimental study. Desalination 2005, 181, 193–205. [Google Scholar] [CrossRef]
Parameters | Units | Accuracy | Type of Variable |
---|---|---|---|
DATE | (dd/mm/yyyy) | - | Continuous |
TIME | time (hh:mm:ss) | - | Continuous |
Temperature | °C | ±0.5 | Independent |
Relative humidity | % | ±3 | Independent |
Solar radiation | Wm−2 | ±5 | Independent |
Distilled water production | mL | ±0.1 | Dependent |
Tilt angle of solar still (SS) | ° to horizontal | ±0.1 | Control |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akrami, M.; Salah, A.H.; Dibaj, M.; Porcheron, M.; Javadi, A.A.; Farmani, R.; Fath, H.E.S.; Negm, A. A Zero-Liquid Discharge Model for a Transient Solar-Powered Desalination System for Greenhouse. Water 2020, 12, 1440. https://doi.org/10.3390/w12051440
Akrami M, Salah AH, Dibaj M, Porcheron M, Javadi AA, Farmani R, Fath HES, Negm A. A Zero-Liquid Discharge Model for a Transient Solar-Powered Desalination System for Greenhouse. Water. 2020; 12(5):1440. https://doi.org/10.3390/w12051440
Chicago/Turabian StyleAkrami, Mohammad, Alaa H. Salah, Mahdieh Dibaj, Maxime Porcheron, Akbar A. Javadi, Raziyeh Farmani, Hassan E. S. Fath, and Abdelazim Negm. 2020. "A Zero-Liquid Discharge Model for a Transient Solar-Powered Desalination System for Greenhouse" Water 12, no. 5: 1440. https://doi.org/10.3390/w12051440
APA StyleAkrami, M., Salah, A. H., Dibaj, M., Porcheron, M., Javadi, A. A., Farmani, R., Fath, H. E. S., & Negm, A. (2020). A Zero-Liquid Discharge Model for a Transient Solar-Powered Desalination System for Greenhouse. Water, 12(5), 1440. https://doi.org/10.3390/w12051440