An Assessment of Hydropeaking Metrics of a Large-Sized Hydropower Plant Operating in a Lowland River, Lithuania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Stage Data Validation
3. Results
3.1. Gauged Stage Data and River Morphology
3.2. River Stage Dynamics
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Energy Council. Hydropower. In World Energy Resources; World Energy Council: London, UK, 2016. [Google Scholar]
- Steller, J.; Lewandowski, S.; Malicka, E.; Kremere, E.; Popa, B.; Punys, P. Hydropower in the East European region: Challenges and opportunities. Hydropower Dams 2018, 25, 39–50. [Google Scholar]
- Bejarano, M.D.; Sordo-Ward, Á.; Alonso, C.; Nilsson, C. Characterizing effects of hydropower plants on sub-daily flow regimes. J. Hydrol. 2017, 550, 186–200. [Google Scholar] [CrossRef] [Green Version]
- Alonso, C.; Román, A.; Bejarano, M.D.; Garcia de Jalon, D.; Carolli, M. A graphical approach to characterize sub-daily flow regimes and evaluate its alterations due to hydropeaking. Sci. Total Environ. 2017, 574, 532–543. [Google Scholar] [CrossRef] [Green Version]
- Moreira, M.; Hayes, D.S.; Boavida, I.; Schletterer, M.; Schmutz, S.; Pinheiro, A. Ecologically-based criteria for hydropeaking mitigation: A review. Sci. Total Environ. 2019, 657, 1508–1522. [Google Scholar] [CrossRef]
- Vibert, R. Répercussions piscicoles du fonctionnement par éclusées des usines hydro-électriques. Bull. Français Piscic. 1939, 137–155. (In French) [Google Scholar] [CrossRef]
- Bain, M.B. Report: Hydropower Operations and Environmental Conservation: St. Marys River, Ontario and Michigan; International Lake Superior Board of Control: Conrnwall, NY, USA, 2007. [Google Scholar]
- Česonienė, L.; Pliuraitė, V.; Dumbrauskas, A.; Punys, P.; Šileikienė, D.; Dapkienė, M. Rizikos Vandens Telkinių Būklės Tyrimų, Taršos Šaltinių Ir Kitų Priežasčių, Lemiančių Rizikos Vandens Telkinio Būklę, Identifikavimas, Būklės Gerinimo Priemonių Parinkimas. I Dalis: Upės Ir Vandens Telkiniai, Esantys Aukščiau Ir Žemiau Žemių Užtvankos; Aplinkos Apsaugos Agentūra: Vilnius, Lithuania, 2017. (In Lithuanian) [Google Scholar]
- Cazeneuve, L.; Lagarrigue, T.; Lascaux, J.M. Etude de L’impact Écologique des Éclusées sur la Rivière Dordogne; ECOGEA: Toulouse, France, 2009. (In French) [Google Scholar]
- Connor, E.J.; Pflug, D.E. Changes in the distribution and density of pink, chum, and Chinook salmon spawning in the upper Skagit River in response to flow management measures. N. Am. J. Fish. Manag. 2004, 24, 835–852. [Google Scholar] [CrossRef]
- Vanzo, D.; Zolezzi, G.; Siviglia, A. Eco-hydraulic modelling of the interactions between hydropeaking and river morphology. Ecohydrology 2016, 9, 421–437. [Google Scholar] [CrossRef]
- Meile, T.; Boillat, J.; Schleiss, A.J. Hydropeaking indicators for characterization of the Upper-Rhone River in Switzerland. Aquat. Sci. 2011, 73, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Carolli, M.; Vanzo, D.; Siviglia, A.; Zolezzi, G.; Bruno, M.C.; Alfredsen, K. A simple procedure for the assessment of hydropeaking flow alterations applied to several European streams. Aquat. Sci. 2015, 77, 639–653. [Google Scholar] [CrossRef]
- Schmutz, S.; Bakken, T.H.; Friedrich, T.; Greimel, F.; Harby, A.; Jungwirth, M.; Melcher, A.; Unfer, G.; Zeiringer, B. Response of fish communities to hydrological and morphological alterations in hydropeaking rivers of Austria. River Res. Appl. 2015, 31, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Punys, P.; Dumbrauskas, A.; Kasiulis, E.; Vyčienė, G.; Šilinis, L. Flow regime changes: From impounding a temperate lowland river to small hydropower operations. Energies 2015, 8, 7478–7501. [Google Scholar] [CrossRef] [Green Version]
- Halleraker, J.H.; Sundt, H.; Alfredsen, K.T.; Dangelmaier, G. Application of multiscale environmental flow methodologies as tools for optimized management of a Norwegian regulated national salmon watercourse. River Res. Appl. 2007, 23, 493–510. [Google Scholar] [CrossRef]
- Auer, S.; Zeiringer, B.; Führer, S.; Tonolla, D.; Schmutz, S. Effects of river bank heterogeneity and time of day on drift and stranding of juvenile European grayling (Thymallus thymallus L.) caused by hydropeaking. Sci. Total Environ. 2017, 575, 1515–1521. [Google Scholar] [CrossRef] [PubMed]
- Harby, A.; Forseth, T.; Ugedal, O.; Baken, T.H.; Sauterleute, J. A method to assess impacts from hydropeaking. In Proceedings of the 11th International Symposium on Ecohydraulics, Melbourne, Australia, 7–12 February 2016. [Google Scholar]
- Bevelhimer, M.S.; McManamay, R.A.; O’Connor, B. Characterizing sub-daily flow regimes: Implications of hydrologic resolution on ecohydrology studies. River Res. Appl. 2015, 31, 867–879. [Google Scholar] [CrossRef]
- Sauterleute, J.F.; Charmasson, J. A computational tool for the characterisation of rapid fluctuations in flow and stage in rivers caused by hydropeaking. Environ. Modell. Softw. 2014, 55, 266–278. [Google Scholar] [CrossRef]
- Charmasson, J. Cosh-tool, a computational tool for the characterisation of rapid fluctuations in flow and stage in rivers caused by hydropeaking. In Proceedings of the 11th International Symposium on Ecohydraulics, Melbourne, Australia, 7–12 February 2016. [Google Scholar]
- Hauer, C.; Holzapfel, P.; Leitner, P.; Graf, W. Longitudinal assessment of hydropeaking impacts on various scales for an improved process understanding and the design of mitigation measures. Sci. Total Environ. 2017, 575, 1503–1514. [Google Scholar] [CrossRef]
- Hauer, C.; Siviglia, A.; Zolezzi, G. Hydropeaking in regulated rivers—From process understanding to design of mitigation measures. Sci. Total Environ. 2017, 579, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.; Panayiotis, D. Modeling unsteady flow characteristics of hydropeaking operations and their implications on fish habitat. J. Hydraul. Eng. 2010, 136, 1053–1066. [Google Scholar]
- Greimel, F.; Zeiringer, B.; Hauer, C. Longtitudal assessment of hydropeaking impacts and evaluation of mitigation measures. In Proceedings of the 11th International Symposium on Ecohydraulics, Melbourne, Australia, 7–12 February 2016. [Google Scholar]
- Schneider, M.; Kopecki, I.; Tuhtan, J.; Sauterleute, J.F.; Zinke, P.; Bakken, T.H.; Zakowski, T.; Merigoux, S. A fuzzy rule-based model for the assessment of macrobenthic habitats under hydropeaking impact. River Res. Appl. 2017, 33, 377–387. [Google Scholar] [CrossRef]
- Zdankus, N.; Vaikasas, S.; Sabas, G. Impact of a hydropower plant on the downstream reach of a river. J. Environ. Eng. Landsc. 2008, 16, 128–134. [Google Scholar] [CrossRef]
- Šikšnys, A.; Ždankus, N.; Sabas, G.; Barvidienė, O. Numerical and field investigations of local bridge abutment scour and unsteady downstream river flow from a nearby hydropower plant. Balt. J. Road Bridge Eng. 2014, 9, 215–224. [Google Scholar] [CrossRef]
- Maddock, I.; Harby, A.; Kemp, P.; Wood, P.J. Ecohydraulics: An Integrated Approach; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar]
- Šilinis, L.; Kasiulis, E.; Punys, P. 2D hydrodynamic modelling for identification of dewatered or flooded stream channel areas downstream large hydropower plant. J. Water Secur. 2019, 5. [Google Scholar] [CrossRef]
- Jia, J.; Punys, P.; Ma, J. Hydropower. In Handbook of Climate Change Mitigation; Springer Science: New York, NY, USA, 2012; pp. 1357–1401. [Google Scholar]
- Chapman, D. Water Quality Assessments: A Guide to Use of Biota, Sediments and Water in Environmental Monitoring, 2nd ed.; E & FN Spon: London, UK, 1996. [Google Scholar]
- Harnischmacher, S. Thresholds in small rivers? Hypotheses developed from fluvial morphological research in western Germany. Geomorphology 2007, 92, 119–133. [Google Scholar] [CrossRef]
- Gidroprojekt. Inzinierno—Gidrologiceskie Izizkanie na Rekie Neman v Nizniem Bjefe Kaunas GES; Gidroprojekt: Moscow, Russia, 1988. (In Russian) [Google Scholar]
- Hingray, B.; Picouet, C.; Musy, A. Hydrology: A Science for Engineers; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Poška, A.; Punys, P. Inžinerinė Hidrologija; LŽŪU Leidybinis Centras: Kaunas, Lithuania, 1996. (In Lithuanian) [Google Scholar]
- Williams, G.P. Bank-full discharge of rivers. Water Resour. Res. 1978, 14, 1141–1154. [Google Scholar] [CrossRef]
- McKean, J.; Nagel, D.; Tonina, D.; Bailey, P.; Wright, C.W.; Bohn, C.; Nayegandhi, A. Remote sensing of channels and riparian zones with a narrow-beam aquatic-terrestrial LIDAR. Remote Sens. 2009, 1, 1065–1096. [Google Scholar] [CrossRef] [Green Version]
- AgriMetSoft. Online Calculators. Available online: https://agrimetsoft.com/calculators/Nash%20Sutcliffe%20model%20Efficiency%20coefficient.aspx (accessed on 1 March 2020).
- Schleiss, A.; Boes, R.M.; Gostner, W.; Lucarelli, C.; Theiner, D.; Kager, A.; Premstaller, G.; Schleiss, A. A holistic approach to reduce negative impacts of hydropeaking. In Dams and Reservoirs under Changing Challenges; Taylor & Francis Group: London, UK, 2011; pp. 1–10. [Google Scholar]
- Shaw, E.; Beven, K.; Chappell, N.; Lamb, R. Hydrology in Practice, 4th ed.; CRC Press: London, UK, 2011. [Google Scholar]
- Juarez, A.; Adeva-Bustos, A.; Alfredsen, K.; Dønnum, B.O. Performance of A two-dimensional hydraulic model for the evaluation of stranding areas and characterization of rapid fluctuations in hydropeaking rivers. Water 2019, 11, 201. [Google Scholar] [CrossRef] [Green Version]
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Scruton, D.A.; Pennell, C.; Ollerhead, L.M.N.; Alfredsen, K.; Stickler, M.; Harby, A.; Robertson, M.; Clarke, K.D.; LeDrew, L.J. A synopsis of “hydropeaking” studies on the response of juvenile Atlantic salmon to experimental flow alteration. Hydrobiologia 2008, 609, 263–275. [Google Scholar] [CrossRef]
Gauging Stations and Stationing | Datum. Masl | Range (m) | Min (m) | Max (m) | Data Sample | Mean (m) | Standard Error | Coefficient of Variation (Cv) |
---|---|---|---|---|---|---|---|---|
Low channel flow | ||||||||
Kaunas HPP GS (0.0 km) | 23.65 | 1.76 | 0.00 | 1.46 | 167 | 0.30 | 0.04 | 1.39 |
0.8 km | 23.41 | 1.62 | 0.00 | 1.63 | 707 | 0.45 | 0.02 | 1.06 |
2.9 km | 22.72 | 1.77 | 0.04 | 1.81 | 708 | 0.57 | 0.02 | 0.91 |
8.9 km | 20.97 | 1.63 | 0.00 | 1.64 | 705 | 0.51 | 0.02 | 0.91 |
11.2 km | 20.60 | 1.46 | 0.00 | 1.46 | 705 | 0.45 | 0.02 | 0.91 |
14.6 km | 19.26 | 1.51 | 0.00 | 1.51 | 708 | 0.58 | 0.02 | 0.73 |
15.6 km | 19.10 | 1.40 | 0.01 | 1.41 | 708 | 0.57 | 0.02 | 0.71 |
18.4 km | 18.73 | 1.37 | 0.00 | 1.37 | 709 | 0.54 | 0.02 | 0.74 |
Lampėdžiai GS (19.2 km) | 18.67 | 1.24 | 0.01 | 1.25 | 167 | 0.46 | 0.03 | 0.68 |
26.4 km | 18.23 | 0.85 | 0.01 | 0.86 | 655 | 0.36 | 0.01 | 0.65 |
44.8 km | 16.22 | 0.51 | 0.01 | 0.52 | 570 | 0.27 | 0.01 | 0.63 |
Average channel flow | ||||||||
Kaunas HPP GS (0.0 km) | 23.63 | 1.81 | 0.00 | 1.51 | 193 | 0.58 | 0.03 | 0.80 |
8.9 km | 20.68 | 2.03 | 0.00 | 2.03 | 1345 | 0.79 | 0.01 | 0.61 |
11.2 km | 19.77 | 1.85 | 0.00 | 1.85 | 1345 | 0.72 | 0.01 | 0.61 |
18.4 km | 18.32 | 2.09 | 0.00 | 2.09 | 1345 | 0.83 | 0.01 | 0.50 |
Lampėdžiai GS (19.2 km) | 19.34 | 1.53 | 0.00 | 1.53 | 193 | 0.76 | 0.02 | 0.44 |
31.1 km | 16.28 | 1.32 | 0.00 | 1.32 | 1344 | 0.61 | 0.01 | 0.43 |
48.8 km | 15.26 | 1.23 | 0.00 | 1.23 | 1344 | 0.57 | 0.01 | 0.42 |
Statistical Parameter | Maximum Upramping Rate (m/h) | Maximum Downramping Rate (m/h) | ||||
---|---|---|---|---|---|---|
Low Channel Water Storage | Average/Moderate Channel Water Storage | High Channel Water Storage | Low Channel Water Storage | Average Channel Water Storage | High Channel Water Storage | |
Mean | 0.55 | 0.40 | 0.7 | 0.49 | 0.52 | 0.68 |
Standard deviation | 0.23 | 0.30 | 0.30 | 0.33 | 0.33 | 0.78 |
Min | 0.21 | 0.55 | 0.10 | 0.06 | 0.05 | 0.40 |
10th percentile | 0.32 | 0.02 | 0.30 | 0.14 | 0.10 | 0.50 |
25th percentile | 0.41 | 0.2 | 0.61 | 0.22 | 0.34 | 0.52 |
Median | 0.60 | 0.38 | 0.69 | 0.44 | 043 | 0.65 |
75th percentile | 0.62 | 0.65 | 0.89 | 0.72 | 0.82 | 0.80 |
90th percentile | 0.76 | 0.74 | 1.04 | 0.85 | 1.03 | 0.81 |
Max | 1.06 | 1.02 | 1.18 | 1.04 | 1.13 | 1.02 |
Upramping | Downramping | ||||||
---|---|---|---|---|---|---|---|
Indicators | Low Flow | Average Flow | High Flow | Indicators | Low Flow | Average Flow | High Flow |
No. of peaks | 12 | 22 | 11 | No. of peaks | 10 | 18 | 11 |
Day | 6 | 10 | 9 | Day | 3 | 8 | 10 |
Sunrise/sunset | 1 | 1 | 0 | Sunrise/sunset | 0 | 0 | 0 |
Night | 5 | 11 | 2 | Night | 7 | 10 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šilinis, L.; Punys, P.; Radzevičius, A.; Kasiulis, E.; Dumbrauskas, A.; Jurevičius, L. An Assessment of Hydropeaking Metrics of a Large-Sized Hydropower Plant Operating in a Lowland River, Lithuania. Water 2020, 12, 1404. https://doi.org/10.3390/w12051404
Šilinis L, Punys P, Radzevičius A, Kasiulis E, Dumbrauskas A, Jurevičius L. An Assessment of Hydropeaking Metrics of a Large-Sized Hydropower Plant Operating in a Lowland River, Lithuania. Water. 2020; 12(5):1404. https://doi.org/10.3390/w12051404
Chicago/Turabian StyleŠilinis, Linas, Petras Punys, Algirdas Radzevičius, Egidijus Kasiulis, Antanas Dumbrauskas, and Linas Jurevičius. 2020. "An Assessment of Hydropeaking Metrics of a Large-Sized Hydropower Plant Operating in a Lowland River, Lithuania" Water 12, no. 5: 1404. https://doi.org/10.3390/w12051404