Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = hydrograph ramping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7078 KB  
Article
Assessment of the Impact of Small Hydropower Plants on the Ecological Status Indicators of Water Bodies: A Case Study in Lithuania
by Laima Česonienė, Midona Dapkienė and Petras Punys
Water 2021, 13(4), 433; https://doi.org/10.3390/w13040433 - 7 Feb 2021
Cited by 30 | Viewed by 10513
Abstract
Hydropower plants produce renewable and sustainable energy but affect the river’s physico-chemical characteristics and change the abundance and composition of the aquatic organisms. The impact of large HPPs on the ecological conditions of surface water bodies have been extensively studied, but less attention [...] Read more.
Hydropower plants produce renewable and sustainable energy but affect the river’s physico-chemical characteristics and change the abundance and composition of the aquatic organisms. The impact of large HPPs on the ecological conditions of surface water bodies have been extensively studied, but less attention has been paid to environmental impact studies of small hydropower plants (SHPs). The impact of hydropeaking on both the river flow regime and ecosystems has been well-studied for peaking mode plants, mainly medium to large-sized ones. However, for small hydroelectric power plants, and especially for those in lowland rivers, the available information on water quality, benthic macroinvertebrates communities and fish abundance, and biomass is not sufficient. Ten small hydropower plants were selected, and the ecological status of water bodies was assessed in different parts of Lithuania. The studies were performed at the riverbed upstream from the SHPs, where the hydrological regime has not changed, and downstream from the SHPs. It was found that the small hydropower plants do not affect the physico-chemical values of the water quality indicators. This study demonstrated that the total number of benthic macroinvertebrates taxa (TS) is influenced by the concentration of nitrogen and suspended solids, the water flow, the river area, and the current speed; the number of EPT (Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies)) taxa is influenced by the concentration of nitrogen and suspended solids. The studied indicators do not have a significant impact on biomass. The SHPs affect the fish abundance and biomass. The Lithuanian fish index (LFI) is influenced by the average depth and area of the river. Some SHPs operating in lowland areas may yield somewhat significant hydrograph ramping but more detailed investigation is needed to support the significance of this impact on the biological indices. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

16 pages, 4313 KB  
Article
An Assessment of Hydropeaking Metrics of a Large-Sized Hydropower Plant Operating in a Lowland River, Lithuania
by Linas Šilinis, Petras Punys, Algirdas Radzevičius, Egidijus Kasiulis, Antanas Dumbrauskas and Linas Jurevičius
Water 2020, 12(5), 1404; https://doi.org/10.3390/w12051404 - 15 May 2020
Cited by 5 | Viewed by 3493
Abstract
This paper discusses rapid flow and stage fluctuations in a large lowland river downstream from a large hydropower plant (HPP) in Lithuania. The main problem arises when the HPP is operating in peak mode. Such operation of HPP causes rapid flow and stage [...] Read more.
This paper discusses rapid flow and stage fluctuations in a large lowland river downstream from a large hydropower plant (HPP) in Lithuania. The main problem arises when the HPP is operating in peak mode. Such operation of HPP causes rapid flow and stage fluctuations, which can have a certain impact on river ecosystems. The study analyzes general abiotic indicators such as upramping and downramping rates and stage fluctuations downstream of the HPP. The main idea was to assess recorded stage upramping and downramping rates along the river downstream of large HPP. To assess stage fluctuation statistics, COSH software was used. A maximum upramping rate of 1.04 m/h and maximum downramping rate of 0.88 m/h were identified using data from temporary and permanent gauging stations. Obtained results revealed that stage fluctuations exceed ecologically acceptable rates up to 20 km downstream of HPP. The effect of hydropeaking fades out only at a chainage of 45 km downstream of HPP. In mountainous regions, ecologically acceptable rates are reached at much smaller distances. The study shows that the traditional coefficient of variation of stage fluctuation data can be used to describe hydropeaking indicators. The main results of this study can be used for environmental impact assessment downstream from HPPs. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

17 pages, 798 KB  
Review
Life Stage-Specific Hydropeaking Flow Rules
by Daniel S. Hayes, Miguel Moreira, Isabel Boavida, Melanie Haslauer, Günther Unfer, Bernhard Zeiringer, Franz Greimel, Stefan Auer, Teresa Ferreira and Stefan Schmutz
Sustainability 2019, 11(6), 1547; https://doi.org/10.3390/su11061547 - 14 Mar 2019
Cited by 64 | Viewed by 9248
Abstract
Peak-operating hydropower plants are usually the energy grid’s backbone by providing flexible energy production. At the same time, hydropeaking operations are considered one of the most adverse impacts on rivers, whereby aquatic organisms and their life-history stages can be affected in many ways. [...] Read more.
Peak-operating hydropower plants are usually the energy grid’s backbone by providing flexible energy production. At the same time, hydropeaking operations are considered one of the most adverse impacts on rivers, whereby aquatic organisms and their life-history stages can be affected in many ways. Therefore, we propose specific seasonal regulations to protect ecologically sensitive life cycle stages. By reviewing hydropeaking literature, we establish a framework for hydrological mitigation based on life-history stages of salmonid fish and their relationship with key parameters of the hydrograph. During migration and spawning, flows should be kept relatively stable, and a flow cap should be implemented to prevent the dewatering of spawning grounds during intragravel life stages. While eggs may be comparably tolerant to dewatering, post-hatch stages are very vulnerable, which calls for minimizing or eliminating the duration of drawdown situations and providing adequate minimum flows. Especially emerging fry are extremely sensitive to flow fluctuations. As fish then grow in size, they become less vulnerable. Therefore, an ‘emergence window’, where stringent thresholds on ramping rates are enforced, is proposed. Furthermore, time of day, morphology, and temperature changes must be considered as they may interact with hydropeaking. We conclude that the presented mitigation framework can aid the environmental enhancement of hydropeaking rivers while maintaining flexible energy production. Full article
Show Figures

Figure 1

20 pages, 2482 KB  
Article
Dynamic Lift on an Artificial Static Armor Layer During Highly Unsteady Open Channel Flow
by Stephan Mark Spiller, Nils Rüther and Heide Friedrich
Water 2015, 7(9), 4951-4970; https://doi.org/10.3390/w7094951 - 14 Sep 2015
Cited by 11 | Viewed by 6078
Abstract
The dynamic lift acting on a 100 mm × 100 mm section of a static armor layer during unsteady flow is directly measured in a series of physical experiments. The static armor layer is represented by an artificial streambed mold, made from an [...] Read more.
The dynamic lift acting on a 100 mm × 100 mm section of a static armor layer during unsteady flow is directly measured in a series of physical experiments. The static armor layer is represented by an artificial streambed mold, made from an actual gravel bed. Data from a total of 190 experiments are presented, undertaken in identical conditions. Results show that during rapid discharge increases, the dynamic lift on the streambed repeatedly exhibits three clear peaks. The magnitude of the observed lift depends on the following hydrograph characteristics: (1) the initial flow depth; (2) the ramping duration and therefore the ramping rate; and (3) the total discharge increase. An adjusted unsteadiness parameter combines those three hydrograph characteristics for rapid discharge increases. Direct correlations between the unsteadiness parameter and the measured dynamic lift during unsteady flow are presented. In addition, the armor layer porosity showed a major impact on the observed effects. It is shown that increasing bed porosity leads to decreasing dynamic lift. Full article
(This article belongs to the Special Issue Recent Advances in Riverflow Research)
Show Figures

Figure 1

24 pages, 2326 KB  
Article
Flow Regime Changes: From Impounding a Temperate Lowland River to Small Hydropower Operations
by Petras Punys, Antanas Dumbrauskas, Egidijus Kasiulis, Gitana Vyčienė and Linas Šilinis
Energies 2015, 8(7), 7478-7501; https://doi.org/10.3390/en8077478 - 22 Jul 2015
Cited by 14 | Viewed by 7502
Abstract
This article discusses the environmental issues facing small hydropower plants (SHPs) operating in temperate lowland rivers of Lithuania. The research subjects are two medium head reservoir type hydro schemes considered within a context of the global fleet of SHPs in the country. This [...] Read more.
This article discusses the environmental issues facing small hydropower plants (SHPs) operating in temperate lowland rivers of Lithuania. The research subjects are two medium head reservoir type hydro schemes considered within a context of the global fleet of SHPs in the country. This research considers general abiotic indicators (flow, level, water retention time in the reservoirs) of the stream that may affect the aquatic systems. The main idea was to test whether the hydrologic regime has been altered by small hydropower dams. The analysis of changes in abiotic indicators is a complex process, including both pre- and post-reservoir construction and post commissioning of the SHPs under operation. Downstream hydrograph (flow and stage) ramping is also an issue for operating SHPs that can result in temporary rapid changes in flow and consequently negatively impact aquatic resources. This ramping has been quantitatively evaluated. To avoid the risk of excessive flow ramping, the types of turbines available were evaluated and the most suitable types for the natural river flow regime were identified. The results of this study are to allow for new hydro schemes or upgrades to use water resources in a more sustainable way. Full article
(This article belongs to the Special Issue Energy Policy and Climate Change)
Show Figures

Figure 1

Back to TopTop