Assessing Impact of Climate Change on Hydrology of Melka Kuntrie Subbasin, Ethiopia with Ar4 and Ar5 Projections
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data
2.3. Methodology
3. Results
3.1. HBV Model Calibration and Validation
3.2. Climate Change Impact Assessment
3.2.1. Baseline Temperature, Rainfall and Streamflow
3.2.2. Projected Temperature, Evapotranspiration, Rainfall and Streamflow
Maximum and Minimum Temperatures
Rainfall
Evapotranspiration
Streamflow
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cheung, W.H.; Senay, G.B.; Singh, A. Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. Int. J. Climatol. 2008, 28, 1723–1734. [Google Scholar] [CrossRef]
- Deressa, T.T.; Hassan, R.M.; Ringler, C. Perception of and adaptation to climate change by farmers in the Nile basin of Ethiopia. J. Agric. Sci. 2011, 149, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Tilahun, H.; Erkossa, T.; Michael, M.; Hagos, F.; Awulachew, S. Comparative performance of irrigated and rainfed agriculture in Ethiopia. WASJ 2011, 14, 235–244. [Google Scholar]
- Worqlul, A.W.; Jeong, J.; Dile, Y.T.; Osorio, J.; Schmitter, P.; Gerik, T.; Srinivasan, R.; Clark, N. Assessing potential land suitable for surface irrigation using groundwater in Ethiopia. Appl. Geogr. 2017, 85, 1–13. [Google Scholar] [CrossRef]
- Belayneh, A.; Adamowski, J.; Khalil, B. Short-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet transforms and machine learning methods. Sustain. Water Resour. Manag. 2016, 2, 87–101. [Google Scholar] [CrossRef]
- Borgomeo, E.; Vadheim, B.; Woldeyes, F.B.; Alamirew, T.; Tamru, S.; Charles, K.J.; Kebede, S.; Walker, O. The Distributional and Multi-Sectoral Impacts of Rainfall Shocks: Evidence from Computable General Equilibrium Modelling for the Awash Basin, Ethiopia. Ecol. Econ. 2018, 146, 621–632. [Google Scholar] [CrossRef]
- Hartman, D.L.; Klein Tank, A.M.G.; Rusicucci, M.; Alexander, L.V.; Broenniman, B.; Charabi, Y.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, E.R.; Kaplan, A.; et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 159–254. Available online: https://eprints.soton.ac.uk/363409/ (accessed on 10 February 2019).
- Bian, H.; Lü, H.; Sadeghi, A.M.; Zhu, Y.; Yu, Z.; Ouyang, F.; Su, J.; Chen, R. Assessment on the Effect of Climate Change on Streamflow in the Source Region of the Yangtze River, China. Water 2017, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Ayele, H.S.; Li, M.-H.; Tung, C.-P.; Liu, T.-M. Impact of Climate Change on Runoff in the Gilgel Abbay Watershed, the Upper Blue Nile Basin, Ethiopia. Water 2016, 8, 380. [Google Scholar] [CrossRef] [Green Version]
- Ayele, H.S.; Li, M.-H.; Tung, C.-P.; Liu, T.-M. Assessing climate change impact on Gilgel Abbay and Gumara watershed hydrology, the upper Blue Nile basin, Ethiopia. Terr. Atmos. Ocean. Sci. 2016, 27, 1005–1018. [Google Scholar] [CrossRef] [Green Version]
- Rowling, M. Scientists Predict Drier Horn of Africa as the Climate Warms. 2015. Available online: https://www.reuters.com/article/us-africa-climatechange-aid/scientists-predict-drier-horn-of-africa-as-climate-warms-idUSKCN0S328K20151009 (accessed on 14 February 2019).
- Greve, P.; Orlowsky, B.; Mueller, B.; Sheffield, J.; Reichstein, M.; Seneviratne, S. Global assessment of trends in wetting and drying over land. Nat. Geosci. 2014, 7, 848. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Zhang, M. Global land moisture trends: Drier in dry and wetter in wet over land. Sci. Rep. 2016, 5, 18018. [Google Scholar] [CrossRef] [PubMed]
- Lyon, B. Seasonal Drought in the Greater Horn of Africa and Its Recent Increase during the March–May Long Rains. J. Clim. 2014, 27, 7953–7975. [Google Scholar] [CrossRef]
- Lyon, B.; Vigaud, N. Unraveling East Africa’s Climate Paradox Ch. in Climate Extremes, Trends and Mechanisms. J. Geophys. Monograph. 2017, 226, 265–281. [Google Scholar]
- Souverijns, N.; Thiery, W.; Demuzere, M.; Van Lipzig, N.P.M. Drivers of future changes in East African precipitation. Environ. Res. Lett. 2016, 11, 114011. [Google Scholar] [CrossRef] [Green Version]
- Bryan, E.; Deressa, T.T.; Gbetibouo, G.A.; Ringler, C. Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environ. Sci. Policy 2009, 12, 413–426. [Google Scholar] [CrossRef]
- Falco, S.D.; Veronesi, M.; Yesuf, M. Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from Ethiopia. Am. J. Agric. Econ. 2011, 93, 829–846. [Google Scholar] [CrossRef] [Green Version]
- Wanders, N.; Wada, Y.; VanLanen, H.A.J. Global hydrological droughts in the 21st century under a changing hydrological regime. Earth Syst. Dynam. 2015, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.; Willenbockel, D.; Strzepek, K.A. Dynamic General Equilibrium Analysis of Adaptation to Climate Change in Ethiopia. Rev. Dev. Econ. 2012, 16, 489–502. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Available online: http://www.ipcc-wg2.org/AR5/report/full-report/ (accessed on 14 February 2019).
- Woo, M.K.; Thorne, R.; Szeto, K.; Yang, D. Streamflow hydrology in the boreal region under the influences of climate and human interference. Philos. Trans. Royal. Soc. B 2008, 363, 2251–2260. [Google Scholar] [CrossRef] [Green Version]
- Solander, K.C.; Bennett, K.E.; Middleton, R.S. Shifts in historical streamflow extremes in the Colorado River Basin. J. Hydrol. Reg. Stud. 2017, 12, 363–377. [Google Scholar] [CrossRef]
- Mohammed, R.; Scholz, M. Climate change and anthropogenic intervention impact on the hydrologic anomalies in a semi-arid area: Lower Zab River Basin, Iraq. Environ. Earth Sci. 2018, 77, 357. [Google Scholar] [CrossRef] [Green Version]
- Dile, Y.T.; Berndtsson, R.; Setegn, S.G. Hydrological Response to Climate Change for Gilgel Abay River, in the Lake Tana Basin-Upper Blue Nile Basin of Ethiopia. PLoS ONE 2013, 8, e79296. [Google Scholar] [CrossRef] [Green Version]
- Beyene, T.; Lettenmaier, D.P.; Kabat, P. Hydrologic impacts of climate change on the Nile River Basin: Implications of the 2007 IPCC scenarios. Clim. Chang. 2010, 100, 433–461. [Google Scholar] [CrossRef]
- Setegn, S.G.; Rayner, D.; Melesse, A.M.; Dargahi, B.; Srinivasan, R. Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Taye, M.T.; Willems, P.; Scheltinga, T.V.C.; Kroeze, C. The Lived Experience of Climate Change: Water Case Study on the Nile and Rhine River Basins. KU Leuven and Wageningen University and Research Centre. 2012. Available online: https://repositorioaberto.uab.pt/handle/10400.2/2128 (accessed on 14 February 2019).
- Daba, M.; Rao, G.N. Evaluating Potential Impacts of Climate Change on Hydro-meteorological Variables in Upper Blue Nile Basin, Ethiopia a Case Study of Finchaa Sub-basin. JEES 2016, 6, 2224–3216. [Google Scholar]
- Haile, A.T.; Akawka, A.L.; Berhanu, B.; Rientjes, T. Changes in water availability in the Upper Blue Nile basin under the representative concentration pathways scenario. Hydrol. Sci. J. 2017, 62, 2139–2149. [Google Scholar] [CrossRef]
- Worqlul, A.; Dile, Y.T.; Ayana, E.; Jeong, J.; Adem, A.; Gerik, T.; Gerik, T. Impact of Climate Change on Streamflow Hydrology in Headwater Catchments of the Upper Blue Nile Basin, Ethiopia. Water 2018, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Taye, M.T.; Ntegeka, V.; Ogiramoi, N.P.; Willems, P. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin. Hydrol. Earth Syst. Sci. 2011, 15, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Enyew, B.D.; Van Lanen, H.A.J.; Van Loon, A.F. Assessment of the Impact of Climate Change on Hydrological Drought in Lake Tana Catchment, Blue Nile Basin, Ethiopia. J. Geol. Geosci. 2014, 03, 1–17. [Google Scholar]
- Besada, H.; Werner, K. An assessment of the effects of Africa’s water crisis on food security and management. Int. J. Water Resour. Dev. 2015, 31, 120–133. [Google Scholar] [CrossRef] [Green Version]
- Parker, H.; Mosello, B.; Calow, R.; Quattri, M.; Kebede, S.; Alamirew, T.; Kume, A. A thirsty future? Water Strategies for Ethiopia’s New Development Era. 2016. Available online: https://www.odi.org/publications/10535-thirsty-future-water-strategies-ethiopias-new-development-era (accessed on 20 May 2019).
- Gizaw, S.M.; Biftu, G.F.; Gan, T.Y.; Moges, S.A.; Koivusalo, H. Potential impact of climate change on streamflow of major Ethiopian rivers. Clim. Chang. 2017, 143, 371–383. [Google Scholar] [CrossRef]
- Lewis, K. Understanding climate as a driver of food insecurity in Ethiopia. Clim. Chang. 2017, 144, 317–328. [Google Scholar] [CrossRef]
- Taye, M.T.; Dyer, E.; Hirpa, F.A.; Charles, K. Climate Change Impact on Water Resources in the Awash Basin, Ethiopia. Water 2018, 10, 1560. [Google Scholar] [CrossRef] [Green Version]
- Sørland, S.L.; Schar, C.; Luthi, D.; Kjellstromet, E. Bias patterns and climate change signals in GCM-RCM model chains. Environ. Res. Lett. 2018, 13, 074017. [Google Scholar] [CrossRef]
- Giorgi, F. Thirty years of regional climate modeling: Where are we and where are we going next? J. Geophys. Res.: Atmos. 2019, 124, 5696–5723. [Google Scholar] [CrossRef] [Green Version]
- Paeth, H.; Hall, N.M.J.; Gaertner, M.A.; Alonso, M.D.; Moumouni, S.; Polcher, J.; Ruti, P.M.; Fink, A.H.; Gosset, M.; Lebel, T.; et al. Progress in regional downscaling of West Africa precipitation. Atmos. Sci. Lett. 2011, 12, 75–82. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Available online: https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf (accessed on 2 March 2019).
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar] [CrossRef] [Green Version]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Rose, S.K. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Tavoni, M. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 688. [Google Scholar]
- Rogelj, J.; Meinshausen, M.; Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Chang. 2012, 2, 248–253. [Google Scholar] [CrossRef]
- Koriche, S.A. Remote Sensing Based Hydrological Modeling for Flood Early Warning in Upper and Middle Awash Basin. M.Sc. ITC University of Twente, The Netherlands. 2012. Available online: https://webapps.itc.utwente.nl/librarywww/papers_2012/msc/wrem/koriche.pdf (accessed on 14 February 2019).
- Getahun, Y.S.; Gebre, S.L. Flood Hazard Assessment and Mapping of Flood Inundation Area of the Awash River Basin in Ethiopia using GIS and HEC-GeoRAS/HEC-RAS Model. J. Civil. Environ. Eng. 2015, 5, 179. [Google Scholar] [CrossRef]
- Asfaw, B.H.; Essen, P.V.; Tsige, Z.T. Integrated Water Resource Management Upper Awash River Basin, Central Ethiopia. 2014. Available online: http://www.waterethiopia.org/wp-content/uploads/2014/03/Background-Information-for-a-Program-Approach-Challenges-and-Possible-Cooperation-between-Dutch-and-Ethiopian-counterparts.pdf (accessed on 12 September 2019).
- Tolera, M.B.; Chung, I.M.; Chang, S.W. Evaluation of the Climate Forecast System Reanalysis Weather Data for Watershed Modeling in Upper Awash Basin, Ethiopia. Water 2018, 10, 725. [Google Scholar] [CrossRef] [Green Version]
- Degefu, M.A.; Rowell, D.P.; Bewket, W. Teleconnections between Ethiopian rainfall variability and global SSTs: Observations and methods for model evaluation. Meteorol. Atmos. Phys. 2017, 129, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Seleshi, Y.; Zanke, U. Recent changes in rainfall and rainy days in Ethiopia. Int. J. Climatol. 2004, 24, 973–983. [Google Scholar] [CrossRef]
- Aguilar, C.; Polo, M.J. Generating reference evapotranspiration surfaces from the Hargreaves equation at watershed scale. Hydrol. Earth Syst. Sci. 2011, 15, 2495–2508. [Google Scholar] [CrossRef] [Green Version]
- Setegn, S.G.; Srinivasan, R.; Melesse, A.M.; Dargahi, B. SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia. Hydrol. Process. 2009, 24. [Google Scholar] [CrossRef]
- Easton, Z.M.; Fuka, D.R.; White, E.D.; Collick, A.S.; Biruk Ashagre, B.; McCartney, M.; Steenhuis, T.S. A multi basin SWAT model analysis of runoff and sedimentation in the Blue Nile, Ethiopia. Hydrol. Earth Syst. Sci. 2010, 14, 1827–1841. [Google Scholar] [CrossRef] [Green Version]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Mulugeta, S.; Fedler, C.; Ayana, M. Analysis of Long-Term Trends of Annual and Seasonal Rainfall in the Awash River Basin, Ethiopia. Water 2019, 11, 1498. [Google Scholar] [CrossRef] [Green Version]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Haddeland, I.; Heinke, J.; Voß, F.; Eisner, S.; Chen, C.; Hagemann, S.; Ludwig, F. Effects of climate model radiation, humidity and wind estimates on hydrological simulations. Hydrol. Earth Syst. Sci. 2012, 16, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, F.; Supit, I.; Franssen, W.; Biemans, H. Climate Change Impacts on Hydrological and Meteorological Extremes. By the European Commission within the Seven Framework Program. 2013. Available online: http://www.combine-project.eu/fileadmin/user_upload/combine/dels/D8.2.pdf (accessed on 14 February 2019).
- Rientjes, T.H.M.; Perera, B.U.J.; Haile, A.T.; Reggiani, P.; Muthuwatta, L.P. Regionalisation for lake level simulation—The case of Lake Tana in the Upper Blue Nile, Ethiopia. Hydrol. Earth Syst. Sci. 2011, 15, 1167–1183. [Google Scholar] [CrossRef]
- Uhlenbrook, S.; Mohamed, Y.; Gragne, A.S. Analyzing catchment behavior through catchment modeling in the Gilgel Abay, Upper Blue Nile River Basin, Ethiopia. Hydrol. Earth Syst. Sci. 2010, 14, 2153–2165. [Google Scholar] [CrossRef] [Green Version]
- Abdo, K.S.; Fiseha, B.M.; Rientjes, T.H.M.; Gieske, A.S.M.; Haile, A.T. Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana Basin, Ethiopia. Hydrol. Process. 2009, 23. [Google Scholar] [CrossRef]
- Seibert, J. HBV Light Version 2 User’s Manual. 2005. Available online: https://www.geo.uzh.ch/dam/jcr:c8afa73c-ac90-478e-a8c7-929eed7b1b62/HBV_manual_2005.pdf (accessed on 14 February 2019).
- Lindström, G.; Johansson, B.; Persson, M.; Gardelin, M.; Bergström, S. Development and test of the distributed HBV-96 hydrological model. J. Hydrol. 1997, 201, 272–288. [Google Scholar] [CrossRef]
- Seibert, J. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrol. Earth Syst. Sci. 2000, 4, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Das, T.; Bárdossy, A.; Zehe, E. Influence of Spatial Variability of Precipitation in a Distributed Rainfall-Runoff Model; IAHS Publ: Foz do Iguaçu, Brazil, 2005; Available online: https://iahs.info/uploads/dms/13432.28-195-203-S7-20-Das.pdf (accessed on 4 July 2019).
- Bekele, D.; Alamirew, T.; Kebede, A.; Zeleke, G.M.; Melesse, A. Modeling Climate Change Impact on the Hydrology of Keleta Watershed in the Awash River Basin, Ethiopia. Environ. Model. Assess. 2018, 24, 95–107. [Google Scholar] [CrossRef]
- Adem, A.A.; Tilahun, S.A.; Ayana, E.K.; Worqlul, A.W.; Assefa, T.T.; Dessu, S.B.; Melesse, A.M. Climate change impact on stream flow in the upper Gilgel Abay Catchment, Blue Nile Basin, Ethiopia. In Landscape Dynamics, Soils and Hydrological Processes in Varied Climates; Springer: Cham, Switzerland, 2016; pp. 645–673. [Google Scholar]
- Ebrahim, G.Y.; Jonoski, A.; van Griensven, A.; Di Baldassarre, G. Downscaling technique uncertainty in assessing hydrological impact of climate change in the Upper Beles River Basin, Ethiopia. Hydrol. Res. 2013, 44, 377–398. [Google Scholar] [CrossRef]
- Williams, A.P.; Funk, C. A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Clim. Dynam. 2011, 37, 2417–2435. [Google Scholar] [CrossRef] [Green Version]
- Mauritzen, C.; Zivkovic, T.; Veldore, V. On the relationship between climate sensitivity and modelling uncertainty. Tellus A Dyn. Meteorol. Oceanogr. 2017, 69, 1327765. [Google Scholar] [CrossRef] [Green Version]
- Tinker, J.; Lowe, J.; Pardaens, A.; Holt, J.; Barciela, R. Uncertainty in climate projections for the 21st century northwest European shelf seas. Prog. Oceanogr. 2016, 148, 56–73. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Environment and Forest (MEF). ETHIOPIA’S Second National Communication to the United Nations Framework Convention on Climate Change (UNFCCC); MEF: Addis Ababa, Ethiopia, 2015.
Rainfall and Temperature | Melka Kuntrie Subbasin | |||
---|---|---|---|---|
Sen’s Slope | p Value | Trend | ||
Rainfall | Annual | 0.11 | 0.944 | No |
Major | 0.14 | 0.834 | No | |
Minor | −0.08 | 0.889 | No | |
Annual temperature | 0.57 | 0.00078 | + |
Parameters | FC (mm) | LP (-) | BETA (-) | PERC (mm/day) | ALFA (-) | K0 (day−1) | K1 (day−1) | K2 (day−1) |
---|---|---|---|---|---|---|---|---|
Optimized values | 218.81 | 0.84 | 2.42 | 0.43 | 0.74 | 0.036 | 0.019 | 0.099 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Getahun, Y.S.; Li, M.-H.; Chen, P.-Y. Assessing Impact of Climate Change on Hydrology of Melka Kuntrie Subbasin, Ethiopia with Ar4 and Ar5 Projections. Water 2020, 12, 1308. https://doi.org/10.3390/w12051308
Getahun YS, Li M-H, Chen P-Y. Assessing Impact of Climate Change on Hydrology of Melka Kuntrie Subbasin, Ethiopia with Ar4 and Ar5 Projections. Water. 2020; 12(5):1308. https://doi.org/10.3390/w12051308
Chicago/Turabian StyleGetahun, Yitea Seneshaw, Ming-Hsu Li, and Pei-Yuan Chen. 2020. "Assessing Impact of Climate Change on Hydrology of Melka Kuntrie Subbasin, Ethiopia with Ar4 and Ar5 Projections" Water 12, no. 5: 1308. https://doi.org/10.3390/w12051308