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Abstract: Assessing future challenges in water resources management is crucial to the Melka Kuntrie
(MK) subbasin suffering water shortage. Impact assessments are evaluated by the HBV hydrological
model with six scenarios, including two GCMs of AR4-A2 and two GCMs of AR5-RCP4.5 and RCP8.5,
for the time periods 2021–2050 and 2071–2100. Evapotranspiration is expected to increase under
all scenarios—due to rising temperature—and induce more water stress on rainfed agriculture of
the area. However, the increase in the monthly minimum temperature is beneficial to crops against
chilling damages. Five out of six projections show significant increases of rainfall and streamflow in
both annual and major rainy seasons, except ECHAM-A2. Annual rainfall (streamflow) is expected
to increase by 38% (23%) and 57% (49%) during 2021–2050 and 2071–2100, respectively, under
RCP8.5 scenarios. Greater flashflood risk is a concern because of the projected increase in streamflow.
The projection of decreased streamflow with ECHAM-A2 will exacerbate the existing water shortage,
especially in the minor rainy season. Water harvesting during the major rainy season would be vital to
enhance water management capacities and reduce flashflood risks. Lacking sufficient hydraulic and
irrigation infrastructures, the MK subbasin will be more vulnerable to the impacts of climate change.
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1. Introduction

The agricultural sectors mostly reliant on seasonal rainfalls are very vulnerable to climate
change [1–4]. For example, the community’s livelihood in the Melka Kuntrie (MK) subbasin, located in
the upper Awash river basin in Ethiopia, is highly dependent on seasonal rainfed agriculture [5,6].
Climate change affecting the rainfall distribution pattern and influencing the hydrological cycle has
been a huge challenge to the region [7–10]. Based on the paleoclimate record from the last 2000 years,
the Horn of Africa was drier when there were warmer conditions on Earth, and wetter when it was
colder [11]. Global assessment of trends in wetting and drying over land showed the aridity changes
in most regions were not following a simplified intensification of existing dryness trends based on
the 1948 to 2005 records [12] and 1979–2013 records [13], showing an inconsistent drying trend over
the Horn of Africa. It was also reported that the present dryness in the region might be attributed
to the influence of recurrent El Niño-Southern Oscillation (ENSO) [14]. The observed inconsistency
between the historical rainfall decreasing trend and the General Circulation Models (GCMs) projection
over the region is still highly debatable [14–16]. Nevertheless, the changing climate and variability are
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making the East African region more vulnerable to frequent droughts and flash floods in the present
decades [17–19].

Temperature is expected to rise at different speeds everywhere, but the increased moisture due to
the rising temperature does not necessarily fall evenly. Some areas are expected to havean increase in
precipitation, while other areas will have less [20,21]. Similarly, the hydrological cycle of a basin is
also sensitive to climate change. Some river basins exhibit excess flow, while others are having low
flow [22–24]. Rainfall projections from different GCMs scenarios in the East Africa are uncertain on
trends and magnitudes. For example, the streamflow of the Nile basin is expected to decrease in the
upcoming years [25–30]; while the other studies show the streamflow of the Nile basin is estimated to
increase for the coming decades [31–33]. Rapid population growth and different purposes of water
usage have further exacerbated the water scarcity problem in the East Africa [34,35].

There were only a few climate change impact studies conducted for the upper Awash river basin,
even more less for the MK subbasin. Increased streamflow due to excess rainfall is expected for the
Hombole subbasin, also located in the upper Awash [36]. However, the decreased trends in historical
rainfall were observed for the entire Awash river basin, showing high climate variability and raising
concerns of food insecurity and intensifying current water shortage [37,38]. For better planning of
adaption measures for the future, it is crucial to assess the impact of climate change on the hydrology
of the MK subbasin.

Recent developments of the Regional Climate Models (RCMs) provide information with better
spatial resolutions to support more detailed impact assessment in climate studies. For example,
the CORDEX (https://cordex.org) database contains several bias-corrected RCMs downscaled data,
driven by GCMs projections, with different spatial resolutions much finer than those of the GCMs.
In some cases, such a GCM_RCM strategy is beneficial to systematically reducing the biases and
modifying climate change signals of the driving GCMs [39]. However, the downscaled climate signals
of different RCMs can vary substantially even when the same GCM are adopted, especially in tropical
domains (e.g., Africa) [40,41]. Before applying the RCM-based or the GCM-based information to
impact assessment, regional climate signals captured by GCMs or RCMs baseline should be carefully
examined with sufficient observations of the study area.

The Special Report on Emissions Scenarios (SRES) of the Fourth Assessment Report (AR4), referred
to as the Coupled Model Intercomparison Project Phase 3 (CMIP3), was released in 2007 [42]; and the
updated Representative Concentration Pathways (RCPs) of the Fifth Assessment Report (AR5), known
as the Coupled Model Intercomparison Project Phase 5 (CMIP5), was released in 2013 [43]. A wide
range of scientific and socioeconomic data, such as population growth, GDP, air pollution, land use
and energy sources, were revised and synthesized in CMIP5 [44,45]. The AR5 findings were compared
for similarities in climate projections with those from the AR4 for global and regional aspects [46].
Assumptions of scenario drivers of the RCP8.5, such as socioeconomic trends and technological change,
are revised based on the extended storyline of the A2 scenario, and both have a similar trajectory of
reaching about 8 W/m2 by 2100 [42,43]. The likely range of global mean surface temperature will
increase 3.8 ◦C–5.7 ◦C, 2.0 ◦C–2.9 ◦C, and 2.5 ◦C–5.9 ◦C under the RCP8.5, RCP4.5, and A2 scenarios,
respectively, by 2100 [47]. Temperature projections of A2 is similar to those of RCP8.5 in terms of
changes in global mean temperature. On the other hand, rainfall projections are more uncertain than
temperature projections, commonly found under AR4 and AR5 scenarios. Precipitations over the East
Africa are likely to increase under both AR4 and AR5 scenarios, but have distinct spatial and temporal
variations among different models and scenarios [42,43].

The main objective of this study is to assess the expected changes in streamflow of the MK subbasin
simulated by Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrological model under six climate
change scenarios. Four GCMs were adopted in this study: two GCMs from AR4 A2 scenario, and
two GCMs from AR5 RCP8.5 and RCP4.5 scenarios (i.e., a total of six scenarios) for the projection
periods of 2021–2050 and 2071–2100. GCMs information are bias-corrected and downscaled to a spatial
resolution of 0.5◦ prior to performing impact assessments. Comparisons of our findings, including
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projected changes in rainfall, temperature and streamflow, with recent studies in the Awash basin
and neighboring subbasins will be discussed to complement or extend current knowledge on climate
change in Ethiopia. The rainfall anomalies associated with the changing climate has been making
water resource management more challenging in the MK subbasin. Thus, it is necessary to carry out
this kind of study in a regular manner to understand the impact of climate change on water resources.
It will help improving water management practice, policy making and the planning of adaptation
measures in the MK subbasin.

2. Materials and Methods

2.1. The Study Area

The Awash river basin is located between 7◦52′–12◦ N and 37◦57′–43◦25′ E. The total Awash river
has a length of 1200 km and a drainage area of 116,374 km2. The Awash river basin is the fourth largest
basin in Ethiopia and the seventh in annual runoff of 4.6 billion m3 [48]. The river rises on the high
plateau near Ginchi town and flows along the Rift Valley. It terminates in the Lake Abbe on the border
with Djibouti [49]. The study area of Melka Kuntrie (MK) subbasin is located between 7◦52′–9.3◦ N
and 37◦57′–38◦7′ E, which is the most upstream part of the Awash river basin. The drainage area
of MK subbasin is 4456 km2, with elevations ranging from 1949 m to 3575 m (Figure 1). The MK
subbasin was selected for this study because of its high population density, diverse ecology and mainly
rainfed agriculture, which is highly vulnerable to the changing climate [50]. The MK subbasin is the
most urbanized and industrial area of the country, in which the capital city Addis Ababa is located.
The availability of better (quality, dense stations) and long-term observed hydro-meteorological datasets
were other reasons to select the MK subbasin for this study.
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Figure 1. Map of the study area: (A) the continent of Africa; (B) the entire Awash river basin; (C) DEM
and meteorological stations of the Melka Kuntrie subbasin.

The upper Awash basin climate varies from humid to sub-humid with an annual mean temperature
range of 15–20 ◦C. The mean annual rainfall varies from 800 to 1400 mm/year, depending on topographic
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variations [51]. There are three seasons in Awash basin: the major rainy season, locally called “Kiremt”
from June to September (JJAS), the minor rainy season, locally called “Belg” from February to May
(FMAM), and the dry season, also known as “Bega” from October to January [52,53]. The basis of these
three seasons is the north or southward shift of the ITCZ (Inter Tropical Convergence Zone). When the
ITCZ shifts toward the north during the northern hemisphere summer, the basin falls under the major
rainy season, because the southwest trade winds bring warm moist air toward the basin. The basin
falls under the dry season when the ITCZ shifts toward the south during the southern hemisphere
summer. The rainfall that contributes to the basin when the ITCZ shifts toward the north along with
other mechanisms is called the minor rainy season [52,53]. The most dominant land use of land cover
type in the MK subbasin is agricultural land, which covers 86% of the subbasin, followed by rang
land (9%), as shown in Figure 2A. The most dominant soil type that covers 44% of the subbasin is
Pellic vertisols (i.e., sandy clay loam), followed by 10% of Eurtic nitisols (i.e., clay loam) as shown
in Figure 2B.
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2.2. Data

The daily observed temperature and rainfall datasets from 1990–2011 were collected from eight
meteorological stations of the National Meteorological Agency. The annual average rainfall varies
from 944 to 1169 mm. The daily streamflow data of Melka Kuntrie gauging station from 1985–2008 for
23 years, as well as different spatial data, including subbasin boundary, river network, DEM, land use
and soil type, were collected from the Ministry of Water, Electricity and Irrigation of Ethiopia. The total
mean annual flow of MK subbasin was estimated to be 942.43 million m3. The spatial interpolation
from eight stations indicated that during the annual and the major rainy season, the entire south
experienced a significant amount of rainfall, which was especially high in the southwest and low in
the north (Figure 3A,B). The amount of rainfall during the minor rainy season was relatively lower
in the central part of MK subbasin than that in the northeast (Figure 3C). Monthly streamflow and
basin-averaged rainfall were shown in Figure 3D, showing significant temporal variations. About 92%
of the annual streamflow was observed in the major rainy season, especially from July to September.
The major rainy season rainfall is the main source of recharge to the subbasin.
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Figure 3. Observed rainfall, temperature, and streamflow and calculated potential evapotranspiration
(PET) of Melka Kuntrie subbasin from 1990–2008: (A) annual rainfall; (B) major rain season rainfall;
(C) minor rainy season rainfall; (D) average monthly streamflow and average areal rainfall; (E) average
monthly temperature and average areal potential evapotranspiration (PET).

One of the inputs for the HBV model, potential evapotranspiration, was estimated using the
Hargreaves equation [54]. The daily potential evapotranspiration was calculated using extra-terrestrial
radiation, minimum and maximum temperatures. Studies using the Hargreaves equation to estimate
PET in Ethiopia found satisfactory results [55,56]. The Hargreaves equation is derived through
regression of the temperature reduction coefficient and relative humidity factor, as in the following:

PETHG = 0.0023× (R a /λ) × (T mean+17 .8) ×
√

Tmax − Tmin (1)

where PETHG is the potential evapotranspiration by the Hargreaves method (mm/day); Ra is the
extra-terrestrial radiation (mm/day) that is dependent on latitude, sunshine hours and solar constant; λ
is the latent heat of vaporization (MJ/Kg); Tmean is the average temperature (◦C); Tmax and Tmin are
the maximum and minimum temperature (◦C), respectively. Based on the Hargreaves’s method the
average monthly potential evapotranspiration (PET) of MK subbasin was estimated to be 162 mm.
The high potential evapotranspiration, particularly from Oct.–Feb., may be attributed to high radiation
and high diurnal temperature variation (especially from Oct.–Feb., when it is quite cold at night and
warm at day), as shown in Figure 3E.

The Mann–Kendall (M–K) test was carried out to exam the trends of observed rainfall and
temperature. The M–K test calculates the difference between every pair of data in a time series by
given a positive or a negative sign, rather than the difference between data values [57]. The purpose is
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to identify the monotonic trend of the data, excluding the influence of extreme values. For most cases,
a significance level of α = 0.05 (i.e., 95% confidence interval) is used to check statistical significance of
the trend calculated by the M–K test. If the computed p value is less than 0.05, it indicates that there
is a significant trend in the time series. Unlike insignificant trends in annual and seasonal rainfalls,
temperature exhibits a significant increasing trend (i.e., the positive sign indicated in Table 1). However,
the M–K test does not give estimations of trend magnitudes. In this study, the Sen’s slope estimator
was used to calculate the linear rate of change. The Sen’s slope represents the median of the slopes
calculated with all possible data pairs in a time series [58]. The Sen’s slope indicates that the rate of
increase in the mean annual temperature for the MK subbasin was 0.57 ◦C/year over the last 21 years.
The annual and major rainy seasonal rainfall of the Sen’s slope indicated an increasing rate of 0.11 and
0.14 mm/year, respectively, while the minor rainy season rainfall decreases at a rate of 0.082 mm/year,
as indicated (Table 1). Overall, the M–K test indicates a significant increasing trend of temperature,
whereas no trend was shown in rainfall.

Table 1. Trend test of annual temperature, annual and seasonal rainfall for Melka Kuntrie subbasin.

Rainfall and Temperature
Melka Kuntrie Subbasin

Sen’s Slope p Value Trend

Rainfall
Annual 0.11 0.944 No
Major 0.14 0.834 No
Minor −0.08 0.889 No

Annual temperature 0.57 0.00078 +

Two GCMs of AR4 A2 scenarios (i.e., ECHAM-A2 and IPSL-A2) and two GCMs of AR5
RCP4.5/RCP8.5 scenarios were selected from the same older version of AR4. For instance, the MPI
model is the new version of ECHAM developed at the Max Planck Institute for Meteorology (MPI-M)
in Hamburg, Germany. The IPSL model was developed at the Institute Pierre Simon Laplace (IPSL),
France. Both RCP4.5 and RCP8.5 scenarios from MPI and IPSL projections were used for HBV
simulations. The downscaled and bias-corrected daily projections of GCMs scenarios for the study, area
were collected from the Earth System Sciences group, Wageningen University [59–61]. The GCMs data
are bias-corrected and downscaled with the WATer and global CHange (WATCH) Forcing Data (WFD),
a reanalyzed global dataset containing daily meteorological data with half-degree resolution [60].
There is a high correlation of 0.95 between the WFD and observed historical data of the MK subbasin.
The bias correction is calculated as the following [59],

Vbc = VGCMs ×
VWFD

VGCMs
(2)

where Vbc is the resulting bias-corrected variable (e.g., temperature or rainfall), VGCMs is the variable
projected by GCMs, VWFD is the corresponding variable of the WFD, and VGCMs is the long-term
monthly mean of the variable. The downscaling of GCMs outputs to the basin scale was performed,
with the delta change approach of calculating the percentage changes in rainfall (or the differences
in temperature) between GCMs baseline and GCMs projections [62]. The calculated delta change
was then applied to adjust the WFD data to represent future projections of GCMs scenarios. A total
of 6 GCMs projections, namely ECHAM-A2, IPSL-A2, MPI-RCP4.5, MPI-RCP8.5, IPSL-RCP4.5 and
IPSL-RCP8.5, are used as input data for the HBV model.

2.3. Methodology

The HBV semi-distributed Swedish hydrological model was used because of its well-recognized
performance of simulating streamflow in different climates, and in Ethiopia [32,63,64]. The model
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inputs require daily rainfall, daily air temperature and daily or monthly estimates of potential
evapotranspiration. The general water balance of the model is expressed as,

P− E−Q =
d(SP + SM + UZ + LZ + Lakes)

dt
(3)

where, P is precipitation (mm/day), E is evapotranspiration (mm/day), Q is runoff (mm/day), SP is
snow pack (mm/day), SM is soil moisture (mm), UZ is upper groundwater zone (mm/day), LZ is lower
groundwater zone (mm/day), Lakes is lake volume (mm).

Table 2 lists calibrated values of the most sensitive parameters affecting streamflow simulation,
obtained in this study. These parameters include the maximum soil moisture storage (FC), soil
moisture threshold above which actual evapotranspiration reaches its potential value (LP), the relative
contribution to runoff from each millimeter of rain (BETA), the percolation rate from UZ to LZ (PERC),
a measure for the nonlinearity of the flow in UZ (ALFA) and the recession coefficients of UZ (K0 and
K1) and LZ (K2).

Table 2. Optimized parameters for Melka Kuntrie subbasin found in Hydrologiska Byråns
Vattenbalansavdelning (HBV) model calibration.

Parameters FC (mm) LP
(-)

BETA
(-)

PERC
(mm/day)

ALFA
(-)

K0
(day−1)

K1
(day−1)

K2
(day−1)

Optimized
values 218.81 0.84 2.42 0.43 0.74 0.036 0.019 0.099

The Nash-Sutcliffe efficiency criterion (Reff) and Flow-Weighted efficiency (WReff) are often used
to assess the skill of streamflow simulations [65]:

Reff = 1−

∑n
i=1

(
Qi

obs −Qi
sim

)2

∑n
i=1

(
Qi

obs −Qobs

)2 (4)

WReff = 1−

∑n
i=1 w(Qobs)

(
Qi

obs −Qi
sim

)2

∑n
i=1 w(Qobs)

(
Qi

obs −Qobs

)2 (5)

where Qi
sim is simulated flow (mm/day) of the i-th day, Qi

obs is observed flow (mm/day) of the i-th day,
Qobs is the average observed flow (mm/day), w(Qobs) is the weighted mean of observed high and low
flow values, n is the number of data days. For most cases, Reff or WReff values between 0.6 and 0.8
indicate fair to good performance, and a model is often said to perform very well when values are
between 0.8 and 0.9 [66].

The observed hydro-meteorological data of 1991–2004 and 2005–2008 were used for HBV calibration
and validation, respectively, before performing impact assessment. The baseline hydrology is simulated
by the HBV model with bias-corrected and downscaled GCMs data for 1971–2000, while the future
hydrology is simulated with bias-corrected GCMs projections, with AR4/AR5 scenarios for 2021–2050
and 2071–2100. The impact of climate change on hydrology is thus evaluated by comparing the baseline
streamflow with projected streamflow.

3. Results

3.1. HBV Model Calibration and Validation

The HBV calibration was performed with observed data of 1991–2004 with the standard automatic
Genetic Algorithm and Powell (GAP) optimization [67]. Comparisons of simulated and observed
streamflow calibration are given in Figure 4, with Reff and WReff of 0.81 and 0.84, respectively. Values of
Reff and WReff for validation period (i.e., 2005–2008), as shown in Figure 5, are 0.74 and 0.76, respectively,
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which are slightly lower than those of calibration period. This may be due to the large scatter of
streamflow data for the validation period than those for the calibration period. It is noted that peak
flows are not well captured for both periods. The underestimation of high flow may be attributed to
the orographic effect, soil type and high spatial rainfall variability [68]. In addition, simulations with
the daily time scale limited the HBV applicability on cases of extreme high rainfall events occurred less
than a day [32].
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3.2. Climate Change Impact Assessment

3.2.1. Baseline Temperature, Rainfall and Streamflow

Monthly patterns of observed maximum and minimum temperatures are well captured by the
GCMs baseline, with deviations mostly less than 0.5 ◦C, as shown in Figure 6. It is noted that the
seasonal pattern of the maximum temperature is quite different than that of the minimum temperature.
The highest maximum temperature is in March (Figure 6A), while the minimum temperature exhibits
high values from March to September (Figure 6B). Observed rainfall and GCM baseline are also
compared, as shown in Figure 7. Although observed monthly rainfalls are well captured by the
GCMs adopted in this study, the baseline of IPSL-AR5 and MPI-AR5 is higher than observed rainfall
in July–September of the major rainy season, while those of IPSL-AR4 and ECHAM-AR4 are lower.
For example, the MPI-AR5 exhibits the largest rainfall discrepancy of 1.3 mm/day compared to the
observed in September as shown in Figure 7. The IPSL-AR4 has the highest rainfall among all GCMs,
and is higher than observed rainfall in both minor rainy and dry seasons, except in April.
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Monthly streamflow simulated with different GCMs baselines match well with observed
streamflow, as shown in Figure 8. Due to higher rainfall of AR5 baseline than the observed in
major rainy season (Figure 7), the streamflow simulated with both MPI and IPSL of AR5 baselines are
larger than observed values. Most streamflow simulated with the ECHAM AR4 streamflow are smaller
than the observed values. During both minor rainy and dry seasons, baseline streamflow simulated
with both ECHAM and IPSL of AR4 are slightly larger than the observed. Higher rainfall given by the
IPSL of AR4 than the observed in both minor rainy and dry seasons might explain why the simulated
streamflow in August is larger than the observed as the result of wetter antecedent soil moistures.
From the baseline results of simulated monthly temperature, rainfall and streamflow, the performance
of AR4 GCMs is not necessarily worse than AR5. Impact assessments conducted in this study also
included the projection from AR4 GCMs.
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Maximum and Minimum Temperatures

The monthly maximum and minimum temperatures are projected to increase by all GCMs,
as shown in Figures 9 and 10, respectively, for both periods of 2021–2050 and 2071–2100. Increases in
temperatures projected by IPSL are higher than those by MPI (or ECHAM) for all scenarios. For both
the maximum and minimum temperatures, increases in 2071–2100 are higher than those in 2021–2050
for all scenarios. For example, the IPSL-RCP8.5 has the largest increase of 2.9 ◦C (i.e., May) among
others during the near future period. For the far future period, the IPSL projections also have the
largest increases of 4.7 ◦C (i.e., May) and 4.6 ◦C (i.e., June) under RCP8.5 and A2, respectively, among
others. The lowest monthly maximum and minimum temperature increases are given by ECHAM-A2
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As shown in Figure 9, the temperature increases in April and May are higher than in March and
have the peak observed temperature (Figure 3). The seasonal pattern of the maximum temperature
will be quite different of having higher values from March to May. On the other hand, the increases
in the minimum temperatures are generally larger than increases in the maximum temperatures for
all GCMs in both periods, and the fluctuation of temperature in some months will be less than the
observed patterns. Different patterns of increases between the maximum and minimum temperatures
reflects observed temperature patterns, as given Figure 3. As a result, a greater chance of having
extreme temperatures is expected, due to changes in the seasonal pattern of the maximum temperature.
However, projected higher values in the minimum temperature will be beneficial to crops, which will
have a lower chance of chilling damage.

Projections of rising temperature given by six scenarios adopted in this study are consistent with
several previous studies. For instance, median changes in mean annual temperature projected with ten
GCMs during the far future for the Awash basin under RCP4.5 and RCP 8.5 scenarios are 2.3 ◦C and
4.5 ◦C, respectively [36], similar to the projection 2.0 ◦C–2.4 ◦C for RCP4.5 and 3.7 ◦C–4.6 ◦C for RCP8.5
based on 20 GCMs of AR5 [69]. The change in the maximum (minimum) temperature for near and
far future periods are projected to be 0.3 ◦C–1.0 ◦C (0.5 ◦C–1.1 ◦C) and 3.0 ◦C–5.0 ◦C (3.5 ◦C–4.5 ◦C),
respectively, based on an average of three GCMs of AR5 [38].

Rainfall

Rainfall projections are calculated as percentage changes with reference to the GCMs baseline
and present separately for annual and seasonal scales as shown in Figure 11. All GCMs scenarios
show larger rainfall percentage changes in the 2071–2100 period. Projections with the IPSL-RCP8.5
has the most significant increases in annual and major rainy season rainfall for both time periods. For
example, the largest changes of 57% and 77% are projected by the IPSL-RCP8.5 for 2021–2050 and
2071–2100, respectively. Annual rainfall and the major rainy season are expected to increase, except the
ECHAM-A2 scenario, but our values are higher than the projected change of 9% for the Awash basin,
with 10 GCMs [36], and 17.2% (RCP4.5)–34.4% (RCP8.5) for the Keleta subbasin, with 20 GCMs [69].
The positive or negative percentage changes of rainfall in major rainy season are consistent with
projected rainfall for all GCMs and both time periods. Changes in annual rainfall are mainly attributed
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to rainfall changes in the major rainy season. On the minor rainy season, there are three cases out of six
projections having negative percentage changes of rainfalls, and the decrease in the far future period
are larger than those in the near future period. Unlike positive percentage changes mostly observed
in annual and major rainy season, only the rainfall projections by the ECHAM-A2 are all negative
percentage changes for both time periods. The projected increase in rainfall and streamflow could lead
to different situations. In one way, it would provide abundant water supply for a growing population
near the subbasin. However, projections of large rainfall increase in the major rainy season will induce
higher risks of flooding, but, on the contrary, rainfall decrease in the minor rainy season increases the
possibilities of water stress. In order to minimize the possible negative impacts, it is suggested to study
the likelihood of extreme weather events in future.
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Figure 11. Percentage changes of annual and seasonal rainfalls for (A) the near future period of
2021–2050, and (B) the far future period of 2071–2100, with reference to the baseline.

Evapotranspiration

Figure 12 shows the percentage change in annual and seasonal evapotranspiration calculated
by the HBV model with different GCMs for both time periods. The increase in evapotranspiration
is mainly attributed to the rising temperature projections (i.e., Figures 9 and 10). The increase in
evapotranspiration in the far future period are larger than those in the near future period. Projections
from the IPSL-RCP8.5 have the largest increase in evapotranspiration among six scenarios adopted in
this study. For example, the annual evapotranspiration increases from the lowest of 10% (ECHAM-A2)
to the highest 23% (IPSL-RCP8.5) in 2021–2050, and from the lowest of 11% (ECHAM-A2) to the highest
of 30% (IPSL-RCP8.5) in 2071–2100. For the minor rainy season, evapotranspiration increases from the
lowest of 12% (MPI-RCP4.5) to the highest of 26% (IPSL-RCP8.5) in 2021–2050, and from the lowest of
14% (MPI-RCP4.5) to the highest of 29% (IPSL-RCP8.5) in 2071–2100. In addition to projected decrease
in rainfall in the minor rainy season, increased evapotranspiration will exaggerate the severity of
water stress.
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Streamflow

Projected streamflow is simulated by the HBV model under AR4 and AR5 scenarios and present as
percentage changes, with reference to those simulated with the baseline, as shown in Figure 13. Similar
to changes in annual rainfall, the IPSL with RCP8.5 has the largest increase in annual streamflow among
the others, and the annual streamflow increase during the far future period is larger than those during
the near future period for all GCMs. For example, the streamflow is projected to increase from 7% to
27% for the annual, and from 11% to 32% for the major rainy season during 2021–2050, except for those
with ECHAM-A2. For the far future period, the annual streamflow is expected to increase from 18% to
59%, and from 19% to 66% for the major rainy season. The projected annual streamflow falls within
the range found for the nearby region, e.g., 6% [36] to 70% [69]. The increase in annual stream flow is
mainly contributed to the increase in streamflow in the major rainy season. For the minor rainy season,
there are three cases out of six projections having negative percentage changes in streamflow, and the
decreases in the far future period are larger than those in the near future period, which are similar to
those observed in rainfall projections. Among all the GCMs scenarios adopted in this study, only the
streamflow calculated with the ECHAM-A2 projections show all negative percentage changes for both
time periods. Projections of large increases of streamflow in major rainy season will induce higher
risks of flooding, but, on the contrary, the decrease in streamflow in the minor rainy season increases
the possibilities of water stress. The projected decrease in streamflow under ECHAM_A2 shows the
worst scenario of having a decrease in rainfall and an increase in evapotranspiration simultaneously in
this study. The decrease in rainfall/streamflow does not only exacerbate the water scarcity issue, but
will also increase the water demand of nearby subbasin, due to increased evapotranspiration.

Figures 14 and 15 presents comparisons of projected monthly streamflow with the baseline
streamflow for AR5 and AR4 scenarios, respectively. Since projections of IPSL and MPI are quite
consistent in terms of an increase or decrease in streamflow, the projected streamflow of both GCMs are
averaged in association with RCP4.5 or RCP8.5 scenarios, as shown in Figure 14, for both time periods.
An increase in streamflow under RCP8.5 is higher than those with RCP4.5, as well as those during the
far future, which are higher than those during the near future. The most significant increase in the
monthly streamflow is in August, while the September streamflow has the most notable differences
between RCP4.5 and RCP8.5. Since the projected percentage changes in seasonal streamflow with
ECHAM-A2 and IPSL-A2 are not consistent (Figure 13), projected monthly streamflow is presented
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separately, as shown in Figure 15A,B. Most monthly streamflow projected with the ECHAM-A2 are
lower than the baseline, except in May, June and July. Projected streamflow with the ECHAM-A2
from August to December during the far future period is significantly lower than those during the
near future period, which is the most inconsistent projection among the six scenarios adopted in this
study. For the IPSL-A2, projected streamflow form May to August is much higher than the baseline,
but lower than the baseline in September and October for both time periods.Water 2020, 12, x 14 of 23 
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Trends of projected streamflow are compared with findings of recent studies in Ethiopia. Increased
runoffs in the wet season and inconsistent trends in the dry season for the Gilgel Abay basin using
six AR4 GCMs and seven AR5 GCMs [9,10] are consistent with our findings. A projected increase in
the mean annual streamflow of the Baro and Tekeze basins located in western and northern Ethiopia,
respectively, using ten GCMs under the RCP4.5/RCP8.5 scenarios, is also consistent with our results
l36]. Similarly, projections of increased annual runoff with the HadCM3 under A2 and B2 scenarios are
expected for the Gilgel Abay basin, with percentage changes in seasonal streamflow up to 30% and
40% during the minor and major rainy seasons, respectively [25,70]. Runoff projections simulated with
17 GCMs under A1B and B1 scenarios show the likely increased trend by the 2050s for the Nyando
River, and inconsistent trends, in terms of increasing or decreasing, for the Lake Tana catchments [32],
which is similar to the MK subbasin under the A2 scenario. The streamflow from June to September
simulated by the HEC-HMS model with the HadCM under the A2 scenario is also projected to decrease
for the upper Beles River Basin (also nearby the Lake Tana) [71]. However, the streamflow simulated
by the HBV for most of subbasins in the Upper Blue Nile Basin is likely to decrease during the near
future under the RCP 4.5 scenario, which is the opposite of the findings of this study [30]. Changes in
streamflow simulated by the HBV model with ECHAM, CNCM3 and IPSL under the A2 scenario for
the Lake Tana catchments are similar to findings of this study. For example, streamflow in major rainy
season under ECHAM-A2 scenario for both time periods is expected to decrease, while the other two
GCMs exhibit the opposite trends [33]. The projection of decreased streamflow under the ECHAM-A2
scenario is opposite to the other projections found in our work and in recent studies under the AR4 and
AR5 scenarios. As a matter of fact, more frequent droughts in the East Africa have been observed over
the past 30 years [72]. Projections with the ECHAM-A2 scenarios should be considered an unlikely
case, rather than an excluded case, as the impacts of droughts will be more devastating to regional
socioeconomics and food security. How to enhance societal resilience with actionable adaptions is still
a challenging issue.

The inconsistency in the rainfall and streamflow projections among GCMs can be attributed to
the uncertainties of complex topography, physical processes, parameterization schemes and feedback
mechanisms considered by different GCMs [73,74]. In addition, the inconsistency indicates the
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importance to re-analyze the possible variation of hydrological variables with new versions of GCMs
under future scenarios. Under the influence of global warming, water scarcity is expected to intensify,
as the rate of evapotranspiration increase. Although there are some uncertainties in the minor rainy
season projections, the streamflow is more likely to increase, based on most of the GCMs. Therefore,
advanced planning and effective implementation of water management strategies should be considered
with the support of impact assessment. Based on projections under AR5 scenarios, flashfloods are likely
to increase in the subbasin, particularly during the major rainy season. As a result, runoff (rainfall)
water harvesting during the major rainy season could minimize the shortage in the minor rainy season
or the impact of flash flooding in the major rainy season. Appropriate water conservation schemes are
necessary for a wider range of climate conditions.

4. Discussions

There are 12 major rivers in Ethiopia, each having a different climate pattern, topography and
land-use/land-cover distributions. Most studies of climate change in Ethiopia focus on the Upper Blue
Nile basin instead of the Awash basin [9,10,25,29–31,33]. However, the Awash basin has suffered from
water stress, and is highly vulnerable to climate change, because of large agricultural, industrial, and
domestic water demands, as emphasized in the Ethiopia’s 2nd National Communication to the United
Nations Framework Convention on Climate Change (UNFCCC) [75]. Regarding our finding of having
higher maximum temperature from March to May (Figure 9), other studies on neighboring regions
presented similar results that the projected increase in the maximum temperature in May is larger
than that in March, including in the Finchaa subbasin of the Upper Blue Nile Basin [29], the Awash
Basin [38], and the Upper Beles River Basin [71]. On the other hand, the fluctuation of temperature
within some particular months will be less than observed patterns, due to the increases in the minimum
temperature being higher than the increases in the maximum temperature (Figures 9 and 10). Similar
findings exhibit in studies of the nearby Finchaa sub-basin [29], the Jemma sub-basin [40] of Upper
Blue Nile Basin, and the Hombole subbasin [36] and the Keleta subabasin [69] of the Awash basin.
Although both findings of seasonal shift in the maximum temperature and higher increase in the
minimum temperature can be observed from the numbers presented in these comparable studies, they
overlook both findings and associated implications of such changes to the society in their presentations.
For example, the precautions of heatwave seasons and the advantages of less chilling damage on crops
at the MK subbasin can be considered an the implication of our findings.

The Awash basin encompasses varied topography and climate patterns. Recent studies on the other
two Awash subbasins, the Hombole [36] and the Keleta [69], using the RCP4.5 and RCP8.5 scenarios,
were compared with our findings on projected changes in temperature differences (TD, Figure 16),
rainfall percentages (RP, Figure 17), and streamflow percentages (SP, Figure 18). The drainage areas of
the Keleta, the MK, and the Hombole subbasins are 850 km2, 4456 km2 and 7731 km2, respectively.
The Hombole is a much larger subbasin contains the MK. The following discussions are based on
numbers presented in Figures 16–18 adopted from data presented in recent studies for the Keleta [69]
and the Hombole [36]. Unlike the Hombole case, both the MK and the Keleta subbasins are categorized
as highland basins. The Hombole has the largest increase in TD, compared to the other two highland
subbasins (Figure 16). However, the increases in both RP and SP are higher for the two highland basins
than in the Hombole subbasin. Downscaled projections indicate likely increases in rainfall and extreme
rainfall in the regions of high or complex topography of the Ethiopian Highlands by the end of the
21st century, as concluded in AR5 [46]. The MK has a larger increase in RP, but a lower increase in SP,
compared to the Keleta subbasin. It is noted that the projected changes in TD, RP and SP with the
RCP8.5 for the near future are even more profound than those with the RCP4.5 for the far future in the
Keleta, and only the TD in Hombole exhibits a similar trajectory on TD.
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The trends of increased (or decreased) projections are mostly consistent among the three subbasins
under all scenarios adopted in these studies, except those with the ECHAM-A2 in the MK. As mentioned
in the Introduction of this study, the A2 storyline is similar to the RCP8.5 in terms of changes in global
mean temperature and radiative forcing by the 2100. Although projected changes in TD with the
ECHAM-A2 are comparable to those with the other scenarios used in this study, and the other two
subbasins, its projected changes in RP and SP are considered to be the less likely case in the MK, due to
inconsistent projected trends with respect to the others compared herein. In contrast, projected changes
in TD with the IPSL-A2 are comparable to the other scenarios. It is noted that the projected changes in
RP and SP with the IPSL-A2 are smaller than those with RCP4.5 and RCP8.5 for both time periods in
the MK subbasin. Projected changes in RP with the IPSL-A2 in the MK are larger (smaller) than those
with the RCP8.5 in the Hombole (the Keleta) for both time periods. It is suggested that projections
with the IPSL-A2 should be considered one of the likely cases, due to its trends being consistent with
the others. Projected changes in TD, RP and SP with the IPSL-A2 represents one possible trajectory of
having less impact than those with RCP4.5 and RCP8.5 in the MK.

This study presents comparable changes in TD, RP and SP projections, as found in recent studies,
which extend the current knowledge of climate change in the Ethiopia with a focus on the upper
Awash subbasin. With only two models from AR4 and AR5, we understood the limitations of such
combinations as many studies rely on the AR5 only. The planning of adaption measures should be
informed by the impact assessment with different scenarios. It often takes time to adopt scientific
findings into real actions for implementing adaption measures. For example, many materials on
climate change impacts addressed in the most updated Ethiopia’s 2nd National Communication to
the UNFCCC [75] were presented with the mixture of AR4 and AR5 scenarios. As discussed in the
previous paragraph, projections with the IPSL-A2 adopted in this study should be considered one of
the likely cases, which will provide values to policy makers to examine how significant differences in
future hydrology with the AR5 scenario will manifest, if the early version of adaption plan were based
on the AR4 scenario only.

It is often challenging to use GCMs data for impact assessment at a basin scale, such as the MK
subbasin, due to the uncertainties and coarse resolutions of GCMs projections. Recent developments
of downscaled RCMs products driven by the GCMs, such as the CORDEX database, demonstrate
a beneficial GCM_RCM approach to capture regional climate signals with better spatial resolutions
available up to 25 km. Alternatively, this study demonstrated the applications of downscaled and
bias-corrected GCMs, with a half-degree spatial resolution, of the AR4 and AR5 scenarios and the HBV
hydrological model, to assess impacts of climate changes on the MK subbasin. Major scientific findings
contributing to the existing knowledge of the climate impact on the area include the following: the
temporal shift of the monthly maximum temperature; the larger increase in the monthly minimum
temperature than that of the monthly maximum temperature; significant increase in annual rainfall
(streamflow), mainly attributed by increased rainfall (streamflow) in the major rainy season; similar
seasonal patterns of projected streamflow; and inconsistent rainfall projections of the minor rainy
season. The implications of these findings to the risk and opportunity of the area were discussed in
previous subsections. The contributions of this study are necessary and complementary to the studies
concerning large areas, such as the entire Awash River Basin.

5. Conclusions

The impacts of climate change on the hydrology of the MK subbasin are evaluated by the HBV
hydrological model, with both AR4 and AR5 scenarios for the projection periods 2021–2050 and
2071–2100. Percentage changes in rainfall, evapotranspiration and streamflow are calculated as ratios
of HBV simulations, under different GCMs scenarios, to their corresponding baseline. The basin is
expected to be warmer in future, with notable increases of the minimum temperature larger than those
of the maximum temperature. The peak of the monthly maximum temperature is projected to shift
from March to April–May, which means high temperature months will be frequently experienced from
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March to May in the future. Evapotranspiration is expected to increase, along with rising temperature
projection. With the warming temperature and enhanced evapotranspiration, surface water storage
would be rapidly depleted.

Patterns of percentage changes in annual and seasonal simulated streamflow are similar to those
in rainfall projections. Percentages of the increase in rainfall/streamflow under RCP8.5 scenarios
are larger than those under RCP4.5 scenarios. Five out of six GCM projections, except ECHAM-A2,
rainfall/streamflow in the major rainy season, are projected to increase in both time periods. Such
consistent projections indicate that the basin is mostly likely to experience intensified flash floods in
the future, especially the peak flow month of August. However, rainfall/streamflow projections in the
minor rainy season found in this study should be handled with care, as their inconsistencies require
further investigation.

The livelihood of communities near the MK subbasin are strongly dependent on surface water
availability, such as ephemeral ponds, perennial springs and rivers and seasonal streams, which can be
severely affected by even the slightest decrease in streamflow. The increased streamflow projected by
most scenarios is the desirable projection, as it will supplement more water to sustain the growing
population. It is then recommended to build sufficient infrastructures, such as reservoirs and retention
ponds, to collect and store extra water for reducing the risk of flooding during the major rainy season.
The increase in the minimum temperature may reduce the probability of chilling damage to crop
products. However, the shift of the peak monthly maximum temperature may have impacts on
the cropping seasons, and should inform the agricultural sectors. The study recommended that the
findings presented herein should be considered for sound policymaking and to develop long-term
adaptation strategies for better water management practice and agricultural productions. Results
presented in current study are based on limited GCM scenarios. Uncertainties in GCMs and selection
of scenarios remain great challenges of being able to provide reliable quantitative information to
support decision making of adaption measures. Considering future socioeconomic development and
population growth of the MK subbasin, effects of land use and vegetation changes and more GCMs
scenarios should be included.
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