Response of Drainage Water Quality to Fertilizer Applications on a Switchgrass Intercropped Coastal Pine Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Management of the Sites
2.3. Field Measurement of Precipitation and Flow
2.4. Field Sampling and Laboratory Analysis of Drainage Water Nitrogen and Phosphorus Concentrations
2.5. Data Processing and Statistical Analyses
3. Results and Discussion
3.1. Drainage Water Nitrogen and Phosphorus Responses to Fertilizer Applications
3.2. Comparisons of Post-Fertilization Water Quality Variables to those of the Pre-Fertilization and Site Preparation Periods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beltran, B.J.; Amatya, D.M.; Youssef, M.; Jones, M.; Callahan, T.J.; Skaggs, R.W.; Nettles, J.E. Impacts of fertilization on water quality of a drained pine plantation: A worst case scenario. J. Environ. Qual. 2010, 39, 293–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacho, J.F.; Youssef, M.A.; Chescheir, G.M.; Skaggs, R.W.; Leggett, Z.H.; Sucre, E.B.; Nettles, J.E.; Arellano, C. Impacts of switchgrass-loblolly pine intercropping on soil physical properties of a drained forest. Trans. ASABE 2015, 58, 1573–1583. [Google Scholar]
- Albaugh, T.J.; Allen, H.L.; Stape, J.L.; Fox, T.R.; Rubilar, R.A.; Price, J.W. Intra-annual nutrient flux in Pinus taeda. Tree Physiol. 2012, 32, 1237–1258. [Google Scholar] [CrossRef] [PubMed]
- Minick, K.J.; Strahm, B.D.; Fox, T.R.; Sucre, E.B.; Leggett, Z.H. Microbial nitrogen cycling response to forest-based bioenergy production. Ecol. Appl. 2015, 25, 2366–2381. [Google Scholar] [CrossRef] [PubMed]
- Minick, K.J.; Strahm, B.D.; Fox, T.R.; Sucre, E.B.; Leggett, Z.H.; Zerpa, J.L. Switchgrass intercropping reduces soil inorganic nitrogen in a young loblolly pine plantation located in coastal North Carolina. For. Ecol. Manag. 2014, 319, 161–168. [Google Scholar] [CrossRef]
- McLaughlin, S.B.; Kszos, L.A. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 2005, 28, 515–535. [Google Scholar] [CrossRef]
- Muwamba, A.; Amatya, D.M.; Ssegane, H.; Chescheir, G.M.; Appelboom, T.; Tollner, E.W.; Nettles, J.E.; Youssef, M.A.; Birgand, F.; Skaggs, R.W.; et al. Effects of site preparation for pine forest/switchgrass intercropping on water quality. J. Environ. Qual. 2015, 44, 1263–1272. [Google Scholar] [CrossRef]
- McCarthy, E.J.; Skaggs, R.W.; Famum, P. Experimental determination of the hydrologic components of a drained forest watershed. Trans. ASABE 1991, 34, 2031–2039. [Google Scholar] [CrossRef]
- Amatya, D.M.; Skaggs, R.W.; Gregory, J.D. Effects of controlled drainage on the hydrology of a drained pine plantation in the North Carolina Coastal Plains. J. Hydrol. 1996, 181, 211–232. [Google Scholar] [CrossRef]
- Muwamba, A.; Amatya, D.M.; Chescheir, G.M.; Nettles, J.E.; Appelboom, T.; Ssegane, H.; Tollner, E.W.; Youssef, M.A.; Birgand, F.; Skaggs, R.W.; et al. Water quality effects of switchgrass intercropping on pine forest in Coastal North Carolina. Trans. ASABE 2017, 60, 1607–1620. [Google Scholar] [CrossRef]
- Ssegane, H.; Amatya, D.M.; Chescheir, G.M.; Skaggs, W.R.; Tollner, E.W.; Nettles, J.E. Consistency of hydrologic relationships of a paired watershed approach. Am. J. Clim. Chang. 2013, 2, 147–164. [Google Scholar] [CrossRef] [Green Version]
- Ssegane, H.; Amatya, D.M.; Muwamba, A.; Chescheir, G.M.; Appelboom, T.; Tollner, E.W.; Nettles, J.E.; Youssef, M.A.; Birgand, F.; Skaggs, R.W. Calibration of paired watersheds: Utility of moving sums in presence of externalities. Hydrol. Process. 2017, 31, 3458–3471. [Google Scholar] [CrossRef]
- USEPA. EPA Manual 351.2, with Slight Modifications Including Dialysis or Standard Methods 4500; USEPA: Washington, DC, USA, 1998.
- Amatya, D.M.; Gilliam, J.W.; Skaggs, R.W.; Lebo, M.E.; Campbell, R.G. Effects of controlled drainage on forest water quality. J. Environ. Qual. 1998, 27, 923–935. [Google Scholar] [CrossRef]
- David, M.B.; Gentry, L.E.; Starks, K.M.; Cooke, R.A. Stream transport of herbicides and metabolites in a tile-drained, agricultural watershed. J. Environ. Qual. 2003, 32, 1790–1801. [Google Scholar] [CrossRef]
- Carlyle, J.C. Nutrient management in a Pinus radiata plantation after thinning: The effect of nitrogen fertilizer on soil nitrogen fluxes and tree growth. Can. J. For. Res. 1995, 25, 1673–1683. [Google Scholar] [CrossRef]
- Lemus, R.; Parrish, D.J.; Abaye, O. Nitrogen-use dynamics in switchgrass grown for biomass. Bioenergy Res. 2008, 1, 153–162. [Google Scholar] [CrossRef]
- Binkley, D.; Burnham, H.; Allen, H.L. Water quality impacts of forest fertilization with nitrogen and phosphorus. For. Ecol. Manag. 1999, 121, 191–213. [Google Scholar] [CrossRef]
- Gurlevik, N.; Kelting, D.L.; Allen, H.L. Nitrogen mineralization following vegetation control and fertilization in a 14-year-old loblolly pine plantation. Soil Sci. Soc. Am. J. 2004, 68, 272–281. [Google Scholar] [CrossRef]
- Cacho, J.F.; Youssef, M.A.; Shi, W.; Chescheir, G.M.; Skaggs, R.W.; Tian, S.; Leggett, Z.H.; Sucre, E.B.; Nettles, J.E.; Arellano, C. Impacts of forest-based bioenergy feedstock production on soil nitrogen cycling. For. Ecol. Manag. 2018, 419, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Cacho, J.F.; Youssef, M.A.; Chescheir, G.M.; Skaggs, R.W.; Appelboom, T.W.; Leggett, Z.H.; Sucre, E.B.; Nettles, J.E.; Arellano, C. Effects of forest-based bioenergy feedstock production on shallow ground water quality of a drained forest soil. Sci. Total Environ. 2018, 631, 13–22. [Google Scholar] [CrossRef]
- Miesel, J.R.; Jach-Smith, L.C.; Renz, M.J.; Jackson, R.D. Distribution of switchgrass (Panicum virgatum L.) aboveground biomass in response to nitrogen addition and across harvest dates. Biomass Bioenergy 2017, 100, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Cacho, J.F.; Youssef, M.A.; Shi, W.; Chescheir, G.M.; Skaggs, R.W.; Tian, S.; Leggett, Z.H.; Sucre, E.B.; Nettles, J.E.; Arellano, C. Impacts on soil nitrogen availability of converting managed pine plantation into switchgras monoculture for bioenergy. Sci. Total Environ. 2019, 654, 1326–1336. [Google Scholar] [CrossRef] [PubMed]
- Fox, T.R.; Allen, H.L.; Albaugh, T.J.; Rubilar, R.; Carlson, C.A. Forest fertilization in southern pine plantations. Better Crops. 2006, 90, 12–15. [Google Scholar]
- Fox, T.R.; Comerford, N.B.; Mcfee, W.W. Kinetics of phosphorus release from Spodosols: Effects of oxalate and formate. Soil Sci. Soc. Am. J. 1990, 54, 1441–1446. [Google Scholar] [CrossRef]
- Nyakatawa, E.Z.; Mays, D.A.; Tolbert, V.R.; Green, T.H.; Bingham, L. Runoff, sediment, nitrogen, and phosphorus losses from agricultural land converted to sweetgum and switchgrass bioenergy feedstock production in north Alabama. Biomass Bioenergy 2006, 30, 655–664. [Google Scholar] [CrossRef]
Site | TKN | NH4-N | NO3-N | PO4-P |
---|---|---|---|---|
Mean (mg L−1) | ||||
IC | 0.49 | 0.06 | 0.05 | 0.04 |
SG | 0.70 | 0.08 | 0.16 | 0.04 |
MP | 0.56 | 0.09 | 0.33 | 0.03 |
Between watersheds | NH4-N | NO3-N | TKN | PO4-P |
Post-fert (mg L−1) | ||||
IC vs. MP | S | S | NS | NS |
IC vs. SG | NS | S | S | NS |
SG vs. MP | NS | S | NS | NS |
Sites | Sites | ||||||
---|---|---|---|---|---|---|---|
Period | Variable | IC | SG | MP | IC | SG | MP |
Outflow (mm) | Outflow (mm) | ||||||
Post-fert | Flow | 1614.5 | 1931 | 1442 | 1614.5 | 1931 | 1442 |
Post-fert 1 | Flow | 640.5 | 856 | 689 | 640.5 | 856 | 689 |
Post-fert 2 | Flow | 974.0 | 1075 | 753 | 974.0 | 1075 | 753 |
Loads (kg ha−1) | Concentration (mg L−1) | ||||||
Post-fert | NH4-N | 0.79 | 1.83 | 1.55 | 0.049 | 0.095 | 0.118 |
Post-fert 1 | NH4-N | 0.48 | 0.82 | 0.75 | 0.074 | 0.096 | 0.134 |
Post-fert 2 | NH4-N | 0.31 | 1.01 | 0.80 | 0.032 | 0.093 | 0.106 |
Post-fert | NO3-N | 0.65 | 1.59 | 2.15 | 0.040 | 0.082 | 0.164 |
Post-fert 1 | NO3-N | 0.23 | 0.40 | 1.54 | 0.036 | 0.047 | 0.276 |
Post-fert 2 | NO3-N | 0.42 | 1.19 | 0.61 | 0.043 | 0.111 | 0.080 |
Post-fert | TKN | 8.59 | 11.15 | 5.69 | 0.532 | 0.377 | 0.434 |
Post-fert 1 | TKN | 2.86 | 4.93 | 2.88 | 0.447 | 0.576 | 0.516 |
Post-fert 2 | TKN | 5.73 | 6.22 | 2.81 | 0.588 | 0.578 | 0.373 |
Post-fert | PO4-P | 0.72 | 0.91 | 0.54 | 0.044 | 0.047 | 0.041 |
Post-fert 1 | PO4-P | 0.15 | 0.36 | 0.12 | 0.024 | 0.043 | 0.021 |
Post-fert 2 | PO4-P | 0.56 | 0.55 | 0.43 | 0.058 | 0.051 | 0.057 |
Period | Site | TKN | NH4-N | NO3-N | PO4-P |
---|---|---|---|---|---|
mg L−1 | |||||
Site preparation | IC | 0.48 | 0.04 | 0.5 | 0.08 |
Pre-fertilization | IC | 0.35 | 0.06 | 0.01 | 0.07 |
Post-fertilization | IC | 0.49 | 0.06 | 0.05 | 0.04 |
Site preparation | SG | 0.69 | 0.02 | 0.15 | 0.07 |
Pre-fertilization | SG | 0.33 | 0.04 | 0.08 | 0.06 |
Post-fertilization | SG | 0.70 | 0.08 | 0.16 | 0.04 |
Site preparation | MP | 0.43 | 0.02 | 0.06 | 0.09 |
Pre-fertilization | MP | 0.24 | 0.04 | 0.01 | 0.07 |
Post-fertilization | MP | 0.56 | 0.09 | 0.33 | 0.03 |
Between Experimental Periods | Site | TKN | NH4-N | NO3-N | PO4-P |
Significance | |||||
Post-fert vs. Site prep | IC | NS | S | S | S |
Post-fert vs. Pre-fert | IC | NS | NS | S | S |
Post-fert vs. Site prep | SG | NS | S | NS | S |
Post-fert vs. Pre-fert | SG | S | S | S | S |
Post-fert vs. Pre-fert | MP | S | S | S | S |
Year | Site | Flow (mm) | TKN | NH4-N | NO3-N | PO4-P |
---|---|---|---|---|---|---|
kg ha−1 | ||||||
Site preparation | IC | 693.1 | 4.99 | 0.22 | 3.20 | 0.64 |
Pre-fertilization | IC | 736.0 | 3.29 | 0.49 | 0.30 | 0.74 |
Post-fertilization | IC | 1614.5 | 8.59 | 0.79 | 0.65 | 0.72 |
Site preparation | SG | 488.8 | 4.56 | 0.25 | 1.48 | 0.34 |
Pre-fertilization | SG | 965.5 | 5.01 | 0.49 | 1.27 | 0.77 |
Post-fertilization | SG | 1931 | 11.15 | 1.83 | 1.59 | 0.91 |
Site preparation | MP | 698.3 | 3.25 | 0.20 | 0.29 | 0.66 |
Pre-fertilization | MP | 700.9 | 2.21 | 0.58 | 0.29 | 0.61 |
Post-fertilization | MP | 1442 | 5.69 | 1.55 | 2.15 | 0.54 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muwamba, A.; Amatya, D.M.; Chescheir, G.M.; Nettles, J.E.; Appelboom, T.; Tollner, E.W.; Ssegane, H.; Youssef, M.A.; Birgand, F.; Callahan, T. Response of Drainage Water Quality to Fertilizer Applications on a Switchgrass Intercropped Coastal Pine Forest. Water 2020, 12, 1265. https://doi.org/10.3390/w12051265
Muwamba A, Amatya DM, Chescheir GM, Nettles JE, Appelboom T, Tollner EW, Ssegane H, Youssef MA, Birgand F, Callahan T. Response of Drainage Water Quality to Fertilizer Applications on a Switchgrass Intercropped Coastal Pine Forest. Water. 2020; 12(5):1265. https://doi.org/10.3390/w12051265
Chicago/Turabian StyleMuwamba, Augustine, Devendra M. Amatya, George M. Chescheir, Jamie E. Nettles, Timothy Appelboom, Ernest W. Tollner, Hebert Ssegane, Mohamed A. Youssef, Francois Birgand, and Timothy Callahan. 2020. "Response of Drainage Water Quality to Fertilizer Applications on a Switchgrass Intercropped Coastal Pine Forest" Water 12, no. 5: 1265. https://doi.org/10.3390/w12051265