Assessment of the Impact of Forestry and Settlement-Forest Use of the Catchments on the Parameters of Surface Water Quality: Case Studies for Chechło Reservoir Catchment, Southern Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Descprition of the Study Catchments
2.2. Sampling and Analytical Methods
2.3. Data Analysis
2.3.1. Basic Data Analysis
2.3.2. Cluster Analysis
- all examined physicochemical indicators (mentioned below),
- physical and acidification indicators (temperature, TSS, pH),
- oxygen indicators (DO, BOD5, CODCr),
- phosphorus indicators (TP, PO43−),
- nitrogen indicators (Org–N, N–NH4+, N–NO2−, N–NO3−),
- salinity indicators (SO42−, Cl−, Ca2+, Mg2+, Na+, K+).
2.3.3. Factor Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wardas, M.; Aleksander-Kwaterczak, U.; Jusik, S.; Hryc, B.; Zgoła, T.; Sztuka, M.; Kaczmarska, M.; Mazurek, M. An attempt to assess the impast of anthropopressure on the ecological state of urbanized watercourses of Krakow conurbation and the difficulties encountered. J. Elementol. 2010, 15, 725–743. [Google Scholar] [CrossRef]
- Bogdał, A.; Kowalik, T.; Ostrowski, K.; Skowron, P. Seasonal variability of physicochemical parameters of water quality on length of Uszwica river. J. Ecol. Eng. 2016, 17, 161–170. [Google Scholar] [CrossRef]
- Bulut, V.N.; Bayram, A.; Gundogdu, A.; Soylak, M.; Tufekci, M. Assessment of water quality parameters in the stream Galyan, Trabzon, Turkey. Environ. Monit. Assess. 2010, 165, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kanownik, W.; Kowalik, T.; Bogdał, A.; Ostrowski, K. Quality Categories of Stream Water Included in a Small Retention Program. Pol. J. Environ. Stud. 2013, 22, 159–165. [Google Scholar]
- Kiryluk, A.; Leszczyński, J.; Łukowski, A.; Miłaszewski, R.; Piekutin, J.; SIemieniuk, A.; Skorbiłowicz, E.; Skorbiłowicz, M.; Szczykowska, J.; Wiater, J.; et al. Źródła zanieczyszczeń wód powierzchniowych i wybrane metody ich oczyszczania. Budownictwo i Inżynieria Środowiska 2014, 5, 49–57. (In Polish) [Google Scholar]
- Liu, X.; Li, G.; Liu, Z.; Guo, W.; Gao, N. Water pollution characteristics and assessment of lower reaches in Haihe River basin. Procedia Environ. Sci. 2010, 2, 199–206. [Google Scholar] [CrossRef]
- Al-Shami, S.A.; Rawi, C.S.M.; Ahmad, A.H.; Hamid, S.A.; Nor, S.A.M. Influence of agricultural, industrial, and anthropogenic stresses on the distribution and diversity of macro invertebrates in Juru River basin, Penang, Malaysia. Ecotoxicol. Environ. Saf. 2011, 74, 1195–1202. [Google Scholar] [CrossRef]
- Policht-Latawiec, A.; Kapica, A. Influence of Hard Coal Mine on Water Quality in the Vistula River. Annu. Set Environ. Prot. Rocznik Ochrona Środowiska 2013, 15, 2640–2651. (In Polish) [Google Scholar]
- Mrozińska, N.; Glińska-Lewczuk, K.; Burandt, P.; Kobus, S.; Gotkiewicz, W.; Szymańska, M.; Bąkowska, M.; Obolewski, K. Water Quality as an Indicator of Stream Restoration Effects—A Case Study of the Kwacza River Restoration Project. Water 2018, 10, 1249. [Google Scholar] [CrossRef]
- Bahar, M.M.; Ohmori, H.; Yamamuro, M. Relationship between river water quality and land use in a small river basin running through the urbanizing area of Central Japan. Limnology 2008, 9, 19–26. [Google Scholar] [CrossRef]
- Bogdał, A.; Ostrowski, K. Loads of selected components supplied with precipitation and flowing away from the area of two small catchments with diversified use. Acta Sci. Pol. Formatio Circumiectus 2009, 8, 35–45. [Google Scholar]
- Lai, Y.C.; Tu, Y.T.; Yang, C.P.; Surampalli, R.Y.; Kao, C.M. Development of a water quality modeling system for river pollution index and suspended solid loading evaluation. J. Hydrol. 2013, 478, 89–101. [Google Scholar] [CrossRef]
- Hutchins, M.G. What impact might mitigation of diffuse nitrate pollution have on river water quality in a rural catchment? J. Environ. Manag. 2012, 109, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouri, G.; Shinoda, S.; Oki, T. Assessing environmental improvement options from a water quality perspective for an urbane rural catchment. Environ. Model. Softw. 2012, 32, 16–26. [Google Scholar] [CrossRef]
- Bakarat, A.; El Baghdadi, M.; Meddah, R.; Rais, J.; Nadem, S.; Afdali, M. Evaluation of water quality in open channels flowing through Beni-Mellal City (Morocco). J. Water Land Dev. 2013, 19, 3–11. [Google Scholar] [CrossRef]
- Kowalik, T.; Bogdał, A.; Borek, Ł.; Kogut, A. The effect of treated sewage outflow from a modernized sewage treatment plant on water quality on the Breń river. J. Ecol. Eng. 2015, 16, 96–102. [Google Scholar] [CrossRef]
- Sakinatu, I.; Muhammad, A.A. Impact of soil erosion and degradation on water quality: A review. Geol. Ecol. Landsc. 2017, 1, 1–11. [Google Scholar] [CrossRef]
- Halecki, W.; Kruk, E.; Ryczek, M. Estimations of nitrate nitrogen, total phosphorus flux and suspended sediment concentration (SSC) as indicators of surface-erosion processes using an ANN (Artificial Neural Network) based on geomorphological parameters in mountainous catchments. Ecol. Indic. 2018, 91, 461–469. [Google Scholar] [CrossRef]
- Miller, J.D.; Schoonover, J.E.; Williard, K.W.J.; Hwang, C.R. Whole catchment land cover effects on water quality in the Lower Kaskaskia River Watershed. Water Air Soil Pollut. 2011, 221, 337–350. [Google Scholar] [CrossRef]
- Tu, J. Spatially varying relationships between land use and water quality across an urbanization gradient explored by geographically weighted regression. Appl. Geogr. 2011, 31, 376–392. [Google Scholar] [CrossRef]
- Kowalik, T.; Kanownik, W.; Bogdał, A.; Policht-Latawiec, A. Wpływ zmian użytkowania zlewni wyżynnej na kształtowanie jakości wody powierzchniowej. Rocznik Ochrona Środowiska 2014, 16, 223–238. (In Polish) [Google Scholar]
- Misztal, A.; Kuczera, M. Impact of land use method in a catchments area on the dynamics of the nitrogen compounds in the outflowing water. Ecol. Chem. Eng. 2010, 17, 642–649. [Google Scholar]
- Kanownik, W.; Kowalik, T. Variability of Water Resources Flowing Away from Small Agricultural Catchment. Pol. J. Environ. Stud. 2010, 19, 65–71. [Google Scholar]
- Kopacz, M.; Twardy, S. Zmiany użytkowania ziemi z zlewni Górnego Dunajca w aspekcie wybranych parametrów jakościowych wód powierzchniowych. Woda-Środowisko-Obszary Wiejskie 2006, 6, 191–202. (In Polish) [Google Scholar]
- Gülbaz, S.; Kazezyilmaz-Alhan, C.M. Impact of land use/cover changes on water quality and quantity in a calibrated hydrodynamic model. In Proceedings of the 10th International Congress on Advances in Civil Engineering, Middle East Technical University, Ankara, Turkey, 17–19 October 2012. [Google Scholar]
- Bogdał, A.; Kowalik, T. Variability of values of physicochemical water quality indices along the length of the Iwoniczanka stream. J. Ecol. Eng. 2015, 16, 168–175. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, J.; Peng, S. Assessing the effects of landscape pattern on river water quality at multiple scales: A case study of the Dongjiang River watershed, China. Ecol. Indic. 2012, 23, 166–170. [Google Scholar] [CrossRef]
- Kändler, M.; Blechinger, K.; Seidler, C.; Pavlů, V.; Šanda, M.; Dostál, T.; Krása, J.; Vitvar, T.; Štich, M. Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Sci. Total Environ. 2017, 586, 1316–1325. [Google Scholar] [CrossRef]
- Kowalik, T.; Bogdał, A.; Kanownik, W.; Ostrowski, K.; Rajda, W. Quality and Functional Values of Waters Flowing away from Catchments of Planned Small Retention Storage Reservoirs in the Beskid Makowski and Żywiecki Mts; The University of Agriculture in Krakow: Krakow, Poland, 2010. [Google Scholar]
- Kondracki, J. Geografia Regionalna Polski; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2011; ISBN 9788301160227. [Google Scholar]
- Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for Community Action in the Field of Water Police. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF (accessed on 7 May 2019).
- Chełmicki, W. Woda: Zasoby, Degradacja, Ochrona; PWN: Warszawa, Poland, 2019; ISBN 9788301135577. (In Polish) [Google Scholar]
- Rao, A.R.; Srinivas, V.V. Regionalization of watersheds by hybrid-cluster analysis. J. Hydrol. 2006, 318, 37–56. [Google Scholar] [CrossRef]
- Cupak, A. Initial results of nonhierarchical cluster methods use for low flow grouping. J. Ecol. Eng. 2017, 18, 44–50. [Google Scholar] [CrossRef]
- Stanisz, A. Przystępny Kurs Statystyki z Zastosowaniem STATISTICA PL na Przykładach z Medycyny. Analizy Wielowymiarowe; StatSoft: Kraków, Poland, 2007; Volume 3. (In Polish) [Google Scholar]
- Brzeziński, J. Wielozmiennowe Modele Matematyczne w Badaniach Psychologicznych; PWN: Warszawa, Poland, 1987. (In Polish) [Google Scholar]
- Cupak, A. Regionalization of catchments with use hierarchical cluster analysis methods. Teka Komisji Ochrony i Kształtowania Środowiska Przyrodniczego 2013, 10, 5–13. [Google Scholar]
- Cupak, A.; Wałęga, A.; Michalec, B. Cluster analysis in determination of hydrologically homogeneous regions with low flow. Acta Sci. Pol. Formatio Circumiectus 2017, 16, 53–63. [Google Scholar] [CrossRef]
- Yu, S.; Shang, J.; Zhao, J.; Guo, H. Factor analysis and dynamics of water quality of the Songhua River, Northeast China. Wate Air Soil Pollut. 2003, 144, 159–169. [Google Scholar] [CrossRef]
- Pekey, H.; Karakaş, D.; Bakoglu, M. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Mar. Pollut. Bull. 2004, 49, 809–818. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, L.; Luo, Y.; Zhang, H.; Christie, P. Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: Role of pollutant migration and soil physicochemical properties. Environ. Pollut. 2008, 151, 470–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iliopoulou, T.; Aguilar, C.; Arheimer, B.; Bermúdez, M.; Bezak, N.; Ficchì, A.; Koutsoyiannis, D.; Parajka, J.; Polo, M.J.; Thirel, G.; et al. A large sample analysis of European rivers on seasonal river flow correlation and its physical drivers. Hydrol. Earth Syst. Sci. 2019, 23, 73–919. [Google Scholar] [CrossRef]
- Wyżga, B.; Kundzewicz, Z.W.; Ruiz-Villanueva, V.; Zawiejska, J. Flood Generation Mechanisms and Changes in Principal Drivers. In Flood Risk in the Upper Vistula Basin, GeoPlanet: Earth and Planetary Sciences; Springer: Berlin, Germany, 2016. [Google Scholar]
- Maidment, D.R. Handbook of Hydrology; McGraw-Hill, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Hume, P.E. Adapting to climate change: Is there scope for ecological Management in the face of global threat. J. Appl. Ecol. 2005, 42, 784–794. [Google Scholar] [CrossRef]
- Moreno-Mateos, D.; Comín, F.A.; Pedrocchi, C.; Causapé, J. Effect of Wetlands on water quality of an agricultural catchment in a semi-arid area under land use transformation. Wetlands 2009, 29, 1104–1113. [Google Scholar] [CrossRef]
- Wałęga, A.; Radecki-Pawlik, A.; Kaczor, G. Naturalne Sposoby Zagospodarowania wód Opadowych; The University of Agriculture in Krakow: Krakow, Poland, 2013. (In Polish) [Google Scholar]
- Hua, A.K. Land Use Land Cover Changes in Detection of Water Quality: A Study Based on Remote Sensing and Multivariate Statistics. J. Environ. Public Health 2017, 2017, 7515130. [Google Scholar] [CrossRef]
- Williams, T.M.; Amatya, D.M.; Hitchcock, D.R.; Edwards, A.E. Streamflow and nutrients from a Karst watershed with a downstream embayment: Chapel Branch Creek. J. Hydrol. Eng. 2014, 19, 428–438. [Google Scholar] [CrossRef]
- Muwamba, A.; Amatya, D.M.; Trettin, C.C.; Glover, J.B. Comparing nutrient export from first, second and third order watersheds in the South Carolina Atlantic coastal plain. In Headwaters to Estuaries: Advances in Watershed Science and Management, Proceedings of the Fifth Interagency Conference on Research in the Watersheds, Asheville, NC, USA, 2–5 March 2015; U.S. Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2015; pp. 82–88. [Google Scholar]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef]
- Sotomayor, G.; Hampel, H.; Vázquez, R.F. Water quality assessment with emphasis in parameter optimization using pattern recognition methods and genetic algorithm. Water Res. 2018, 130, 353–362. [Google Scholar] [CrossRef]
- Rodríguez-Romero, A.J.; Rico-Sánchez, A.E.; Mendoza-Martínez, E.; Gómez-Ruiz, A.; Sedeño-Díaz, J.E.; López-López, E. Impact of Changes of Land Use on Water Quality, from Tropical Forest to Anthropogenic Occupation: A Multivariate Approach. Water 2018, 10, 1518. [Google Scholar] [CrossRef]
- Turner, W.R.; Brandon, K.; Brooks, T.M.; Costanza, R.; da Fonseca, G.A.B.; Portela, R. Global Conservation of Biodiversity and Ecosystem Services. BioScience 2007, 57, 868–873. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Lin, L.; Yang, K.; Liu, Q.; Qian, G. Influences of land use on water quality in a reticular river network area: A case study in Shanghai, China. Landsc. Urban Plan. 2015, 137, 20–29. [Google Scholar] [CrossRef]
- Wan, R.; Cai, S.; Li, H.; Yang, G.; Li, Z.; Nie, X. Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China. J. Environ. Manag. 2014, 133, 1–11. [Google Scholar] [CrossRef]
- Nilsson, C.; Renöfält, B.M. Linking flow regime and water quality in rivers: A challenge to adaptive catchment management. Ecol. Soc. 2008, 13, 18. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, J.; Wang, X. Recognizing the Relationship between Spatial Patterns in Water Quality and Land-Use/Cover Types: A Case Study of the Jinghe Oasis in Xinjiang, China. Water 2018, 10, 646. [Google Scholar] [CrossRef]
- Kosmowska, A.; Żelazny, M.; Małek, S.; Stańczyk, T. Impact of deforestation on water chemistry in the western Tatras and Beskid Śląski range in the Polish Carpathians. Acta Sci. Pol. Formatio Circumiectus 2018, 18, 89–99. [Google Scholar] [CrossRef]
- Mello, K.; Valente, R.A.; Randhir, T.O.; Dos Santos, A.C.A.; Vettorazzi, C.A. Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: Watershed versus riparian zone. Catena 2018, 167, 130–138. [Google Scholar] [CrossRef]
- Mello, K.; Valente, R.A.; Randhir, T.O.; Vettorazzi, C.A. Impacts of tropical forest cover on water quality in agricultural watersheds in southeastern Brazil. Ecol. Indic. 2018, 93, 1293–1301. [Google Scholar] [CrossRef]
- Namugize, J.N.; Jewitt, G.; Graham, M. Effects of land use and land cover changes on water quality in the uMngeniriver catchment, South Africa. Phys. Chem. Earth 2018, 105, 247–264. [Google Scholar] [CrossRef]
- Wijesiri, B.; Deilami, K.; Goonetilleke, A. Evaluating the relationship between temporal changes in land use and resulting water quality. Environ. Pollut. 2018, 234, 480–486. [Google Scholar] [CrossRef]
- Selle, B.; Schwientek, M.; Lischeid, G. Understanding processes governing water quality in catchments using principal component scores. J. Hydrol. 2013, 486, 31–38. [Google Scholar] [CrossRef]
- Carey, R.O.; Hochmuth, G.J.; Martinez, C.J.; Boyer, T.H.; Dukes, M.D.; Toor, G.S.; Cisar, J.L. Evaluating nutrient impacts in urban watersheds: Challenges and research opportunities. Environ. Pollut. 2013, 173, 138–149. [Google Scholar] [CrossRef]
- Sojka, M.; Siepak, M.; Zioła, A.; Frankowski, S.; Siepak, J. Application of multivariate statistical techniques to evaluation of water quality in the Mała Wełna River (Western Poland). Environ. Monit. Assess. 2008, 147, 159–170. [Google Scholar] [CrossRef]
- Wąsik, E.; Chmielowski, K.; Operacz, A. PCA as a data mining tools characterizing the work of nitrification reactors in the sewage treatment plant in Trepcza. Acta Scientiarum Polonorum Formatio Circumiectus 2017, 16, 209–222. (In Polish) [Google Scholar] [CrossRef]
Parameter | Unit | Catchment of | |
---|---|---|---|
Chechło River | Młoszówka Stream | ||
Area | km2 | 32.32 | 8.35 |
Average length | km | 8.67 | 6.05 |
Maximum length | km | 9.04 | 7.96 |
Average width | km | 3.58 | 1.05 |
Circumference | km | 29.85 | 18.06 |
Form index | – | 0.40 | 0.13 |
Elongation index | – | 0.71 | 0.41 |
Circularity index | – | 0.46 | 0.32 |
Gravelius index | – | 1.48 | 1.76 |
Minimum elevation | m a.s.l. | 275.0 | 275.0 |
Weighted average elevation | m a.s.l. | 300.9 | 347.4 |
Maximum elevation | m a.s.l. | 418.4 | 419.2 |
Weighted average land slope | % | 3.5 | 7.5 |
Average precipitation (1971–2010) | mm | 739 | |
Average temperature (1971–2010) | °C | 8.3 | |
Land use | |||
forest and tree planting | % | 66.7 | 40.2 |
arable lands | % | 8.5 | 14.8 |
grassy ecosystems | % | 14.9 | 24.3 |
Orchards | % | 0.6 | 3.1 |
areas under standing waters | % | 0.3 | 0.0 |
built-up areas | % | 6.3 | 15.1 |
communication areas | % | 2.7 | 2.5 |
Length of main watercourse | km | 8.330 | 5.398 |
Length of tributaries | km | 92.068 | 11.064 |
Total lenght | km | 100.398 | 16.462 |
Water network density | km⋅km−2 | 3.11 | 1.97 |
Average slope of the main watercourse | % | 0.5 | 1.2 |
Lakeity index | % | 0.3 | 0.0 |
Fragility index | % | 5.1 | 2.4 |
Flow | |||
Average annual | m3⋅s−1 | 0.272 | 0.071 |
Average low | m3⋅s−1 | 0.079 | 0.019 |
Maximum with average return period (1/year) 200 | m3⋅s−1 | 38.61 | 10.10 |
100 | m3⋅s−1 | 33.00 | 8.63 |
50 | m3⋅s−1 | 27.55 | 7.21 |
25 | m3⋅s−1 | 20.53 | 5.37 |
10 | m3⋅s−1 | 15.31 | 4.00 |
5 | m3⋅s−1 | 10.30 | 2.69 |
2 | m3⋅s−1 | 4.22 | 1.11 |
Parameters | Units | Sampling Location | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | ||||||||||
Range | Mean ± SD | CV (%) | Range | Mean ± SD | CV (%) | Range | Mean ± SD | CV (%) | Range | Mean ± SD | CV (%) | ||
Chla | μg⋅dm−3 | LD 2–11.8 | 5.0 ± 5.8 | 117 | LD–16.2 | 5.1 ± 7.4 | 145 | LD–16.6 | 7.9 ± 7.5 | 95 | LD–4.7 | 1.7 ± 2.3 | 139 |
Temperature | °C | 0.3–22.5 | 11.4 ± 6.4 | 56 | 0.0–22.6 | 12.3 ± 7.1 | 58 | 0.0–21.3 | 12.1 ± 6.8 | 56 | 0.0–20.9 | 11.6 ± 6.8 | 59 |
TSS | mg⋅dm−3 | 0.1–8.7 | 3.7 ± 2.0 | 56 | 0.3–5.3 | 2.7 ± 1.7 | 62 | 0.9–10.7 | 2.8 ± 2.4 | 85 | 0.1–4.2 | 1.6 ± 1.2 | 75 |
pH | pH unit | 7.1–8.1 | 7.7 ± 0.3 | 4 | 6.6–7.7 | 7.3 ± 0.3 | 4 | 6.6–7.7 | 7.2 ± 0.3 | 5 | 6.4–7.6 | 7.1 ± 0.4 | 5 |
DO | mg O2⋅dm−3 | 7.3–13.5 | 9.7 ± 1.6 | 17 | 5.4–12.3 | 8.3 ± 1.9 | 23 | 2.4–12.0 | 7.8 ± 2.7 | 34 | 2.0–12.8 | 7.9 ± 2.6 | 34 |
DOsat | % | 73–110 | 89 ± 1 | 13 | 30–115 | 79 ± 115 | 19 | 28–99 | 70 ± 19 | 27 | 23–111 | 73 ± 211 | 29 |
BOD5 | mg O2⋅dm−3 | 1.0–10.0 | 3.9 ± 2.8 | 73 | 1.0–10.0 | 4.2 ± 3.0 | 71 | 1.0–15.0 | 4.2 ± 3.4 | 80 | 1.2–10.0 | 4.7 ± 2.6 | 55 |
CODCr | mg O2⋅dm−3 | 1.8–33.1 | 16.4 ± 8.0 | 49 | 25.2–80.0 | 40.6 ± 17.0 | 42 | 16.1–125.2 | 51.1 ± 30.6 | 60 | 25.8–118.0 | 60.4 ± 29.7 | 49 |
TP | mg⋅dm−3 | 0.10–0.93 | 0.26 ± 0.27 | 105 | 0.04–0.93 | 0.20 ± 0.24 | 117 | 0.03–0.59 | 0.17 ± 0.17 | 97 | 0.04–0.82 | 0.16 ± 0.19 | 123 |
PO43− | mg⋅dm−3 | LD–0.095 | 0.038 ± 0.027 | 71 | LD–0.080 | 0.020 ± 0.027 | 134 | LD–0.062 | 0.018 ± 0.023 | 124 | LD–0.089 | 0.022 ± 0.028 | 128 |
TN | mg⋅dm−3 | 1.06–3.82 | 2.42 ± 0.61 | 25 | 0.97–4.92 | 1.97 ± 0.91 | 46 | 1.02–3.76 | 1.80 ± 0.63 | 35 | 1.23–3.74 | 1.93 ± 0.62 | 32 |
Org–N | mg⋅dm−3 | 0.38–1.74 | 1.06 ± 0.38 | 36 | 0.27–4.11 | 1.10 ± 0.89 | 81 | 0.16–2.97 | 0.82 ± 0.64 | 78 | 0.49–2.95 | 1.05 ± 0.60 | 57 |
N–NH4+ | mg⋅dm−3 | 0.03–0.40 | 0.19 ± 0.10 | 53 | 0.16–0.90 | 0.48 ± 0.22 | 46 | 0.21–0.95 | 0.48 ± 0.20 | 42 | 0.24–1.33 | 0.60 ± 0.31 | 51 |
N–NO2− | mg⋅dm−3 | LD–0.029 | 0.014 ± 0.009 | 66 | LD–0.019 | 0.005 ± 0.007 | 142 | LD–0.060 | 0.009 ± 0.016 | 177 | LD–0.065 | 0.008 ± 0.017 | 205 |
N–NO3− | mg⋅dm−3 | 0.28–2.10 | 1.16 ± 0.46 | 40 | 0.06–1.23 | 0.39 ± 0.36 | 91 | 0.09–1.23 | 0.49 ± 0.38 | 79 | 0.01–1.38 | 0.27 ± 0.34 | 124 |
DS | mg⋅dm−3 | 360–628 | 432 ± 68 | 16 | 180–296 | 254 ± 35 | 14 | 148–284 | 242 ± 32 | 13 | 142–314 | 251 ± 47 | 19 |
SO42− | mg⋅dm−3 | 34.8–101.0 | 81.0 ± 18.6 | 23 | 14.8–71.5 | 40.0 ± 15.1 | 38 | 18.1–74.9 | 41.6 ± 17.7 | 42 | 11.9–77.8 | 40.4 ± 19.1 | 47 |
Cl− | mg⋅dm−3 | 36.0–95.3 | 64.7 ± 13.3 | 21 | 28.6–54.5 | 44.8 ± 7.77 | 17 | 29.6–60.4 | 45.4 ± 8.8 | 19 | 27.7–46.4 | 38.1 ± 5.5 | 15 |
Ca2+ | mg⋅dm−3 | 54.9–87.4 | 73.4 ± 10.0 | 14 | 19.7–51.2 | 36.8 ± 7.4 | 20 | 17.4–41.4 | 34.0 ± 5.9 | 17 | 16.1–66.9 | 39.0 ± 11.7 | 30 |
Mg2+ | mg⋅dm−3 | 6.5–10.6 | 8.1 ± 1.0 | 13 | 2.4–5.3 | 4.3 ± 0.7 | 17 | 2.0–5.2 | 4.2 ± 0.8 | 19 | 1.9–5.7 | 4.1 ± 0.9 | 22 |
Na+ | mg⋅dm−3 | 26.3–45.9 | 32.5 ± 5.6 | 17 | 11.3–25.3 | 20.3 ± 4.0 | 20 | 11.4–28.7 | 20.9 ± 4.4 | 21 | 10.6–20.8 | 15.6 ± 2.8 | 18 |
K+ | mg⋅dm−3 | 3.2–8.0 | 4.9 ± 1.2 | 25 | 1.2–3.6 | 2.2 ± 0.6 | 27 | 1.1–3.7 | 2.2 ± 0.6 | 28 | 0.6–3.1 | 1.6 ± 0.7 | 41 |
Parameter | Test Probability Values (p) in Variants | |||||
---|---|---|---|---|---|---|
P1–P2 | P1–P3 | P1–P4 | P2–P3 | P2–P4 | P3–P4 | |
Chla | 0.84 | 0.69 | 0.54 | 0.55 | 0.69 | 0.31 |
Temperature | 0.68 | 0.71 | 0.84 | 0.87 | 0.81 | 0.87 |
TSS | 0.35 | 0.06 | 0.05 1 | 0.87 | 0.04 | 0.02 |
pH | 0.00 | 0.00 | 0.00 | 0.35 | 0.41 | 1.00 |
DO | 0.09 | 0.10 | 0.07 | 0.84 | 0.57 | 0.94 |
DOsat | 0.02 | 0.00 | 0.01 | 0.37 | 0.46 | 0.74 |
BOD5 | 0.81 | 0.68 | 0.20 | 1.00 | 0.46 | 0.46 |
CODCr | 0.00 | 0.00 | 0.00 | 0.31 | 0.08 | 0.41 |
TP | 0.12 | 0.12 | 0.01 | 0.84 | 0.54 | 0.84 |
PO43− | 0.05 | 0.05 | 0.05 | 0.84 | 0.90 | 0.81 |
TN | 0.00 | 0.00 | 0.01 | 0.41 | 0.90 | 0.39 |
Org–N | 0.37 | 0.02 | 0.49 | 0.11 | 0.84 | 0.05 |
N–NH4+ | 0.00 | 0.00 | 0.00 | 0.90 | 0.41 | 0.31 |
N–NO2− | 0.01 | 0.07 | 0.04 | 0.74 | 1.00 | 0.87 |
N–NO3− | 0.00 | 0.00 | 0.00 | 0.51 | 0.09 | 0.02 |
DS | 0.00 | 0.00 | 0.00 | 0.27 | 0.94 | 0.49 |
SO42− | 0.00 | 0.00 | 0.00 | 0.84 | 0.94 | 0.71 |
Cl− | 0.00 | 0.00 | 0.00 | 1.00 | 0.01 | 0.02 |
Ca2+ | 0.00 | 0.00 | 0.00 | 0.24 | 0.71 | 0.23 |
Mg2+ | 0.00 | 0.00 | 0.00 | 0.94 | 0.31 | 0.39 |
Na+ | 0.00 | 0.00 | 0.00 | 0.71 | 0.00 | 0.00 |
K+ | 0.00 | 0.00 | 0.00 | 0.94 | 0.00 | 0.01 |
Parameters | Temperature | pH | DO | BOD5 | CODCr | PO43− | Org–N | N–NH4+ | N–NO2− | N–NO3− | SO42− | Cl− | Ca2+ | Mg2+ | Na+ | K+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | 1.000 | 0.142 | −0.564 1 | −0.272 | 0.355 | 0.149 | 0.182 | 0.321 | 0.324 | −0.384 | −0.252 | 0.192 | 0.195 | −0.078 | 0.157 | −0.225 |
pH | 0.142 | 1.000 | 0.114 | 0.108 | −0.465 | 0.465 | 0.105 | −0.311 | 0.142 | 0.260 | 0.574 | 0.425 | 0.611 | 0.661 | 0.510 | 0.479 |
DO | −0.564 | 0.114 | 1.000 | −0.101 | −0.530 | −0.291 | −0.003 | −0.420 | −0.192 | 0.348 | 0.370 | 0.095 | 0.155 | 0.262 | 0.193 | 0.364 |
BOD5 | −0.272 | 0.108 | −0.101 | 1.000 | −0.017 | 0.096 | −0.264 | −0.025 | −0.136 | 0.124 | 0.107 | −0.204 | −0.146 | 0.046 | −0.207 | −0.011 |
CODCr | 0.355 | −0.465 | −0.530 | −0.017 | 1.000 | −0.166 | 0.140 | 0.688 | 0.258 | −0.554 | −0.700 | −0.456 | −0.429 | −0.605 | −0.545 | −0.667 |
PO43− | 0.149 | 0.465 | −0.291 | 0.096 | −0.166 | 1.000 | −0.098 | −0.017 | 0.258 | 0.152 | 0.253 | 0.404 | 0.346 | 0.414 | 0.348 | 0.190 |
Org–N | 0.182 | 0.105 | −0.003 | −0.264 | 0.140 | −0.098 | 1.000 | −0.039 | 0.049 | −0.068 | −0.144 | −0.007 | 0.149 | 0.001 | 0.045 | −0.022 |
N–NH4+ | 0.321 | −0.311 | −0.420 | −0.025 | 0.688 | −0.017 | −0.039 | 1.000 | 0.303 | −0.616 | −0.524 | −0.374 | −0.521 | −0.602 | −0.446 | −0.740 |
N–NO2− | 0.324 | 0.142 | −0.192 | −0.136 | 0.258 | 0.258 | 0.049 | 0.303 | 1.000 | 0.036 | 0.058 | 0.300 | 0.264 | 0.179 | 0.309 | 0.047 |
N–NO3− | −0.384 | 0.260 | 0.348 | 0.124 | −0.554 | 0.152 | −0.068 | −0.616 | 0.036 | 1.000 | 0.658 | 0.516 | 0.520 | 0.590 | 0.537 | 0.748 |
SO42− | −0.252 | 0.574 | 0.370 | 0.107 | −0.700 | 0.253 | −0.144 | −0.524 | 0.058 | 0.658 | 1.000 | 0.617 | 0.686 | 0.733 | 0.664 | 0.736 |
Cl− | 0.192 | 0.425 | 0.095 | −0.204 | −0.456 | 0.404 | −0.007 | −0.374 | 0.300 | 0.516 | 0.617 | 1.000 | 0.764 | 0.690 | 0.949 | 0.641 |
Ca2+ | 0.195 | 0.611 | 0.155 | −0.146 | −0.429 | 0.346 | 0.149 | −0.521 | 0.264 | 0.520 | 0.686 | 0.764 | 1.000 | 0.857 | 0.781 | 0.734 |
Mg2+ | −0.078 | 0.661 | 0.262 | 0.046 | −0.605 | 0.414 | 0.001 | −0.602 | 0.179 | 0.590 | 0.733 | 0.690 | 0.857 | 1.000 | 0.762 | 0.815 |
Na+ | 0.157 | 0.510 | 0.193 | −0.207 | −0.545 | 0.348 | 0.045 | −0.446 | 0.309 | 0.537 | 0.664 | 0.949 | 0.781 | 0.762 | 1.000 | 0.712 |
K+ | −0.225 | 0.479 | 0.364 | −0.011 | −0.667 | 0.190 | −0.022 | −0.740 | 0.047 | 0.748 | 0.736 | 0.641 | 0.734 | 0.815 | 0.712 | 1.000 |
Parameter | Factor 1 | Factor 2 | Factor 3 |
---|---|---|---|
Temperature | 0.097 | 0.798 1 | 0.299 |
pH | 0.687 | 0.065 | −0.094 |
DO | 0.188 | −0.750 | 0.163 |
BOD5 | −0.060 | −0.066 | −0.834 |
CODCr | −0.605 | 0.610 | 0.072 |
Org–N | 0.010 | 0.042 | 0.703 |
N–NH4+ | −0.556 | 0.629 | −0.058 |
N–NO2− | 0.312 | 0.630 | 0.030 |
N–NO3− | 0.648 | −0.434 | −0.169 |
SO42− | 0.804 | −0.303 | −0.221 |
Cl− | 0.872 | 0.120 | 0.129 |
Ca2+ | 0.910 | 0.053 | 0.155 |
Mg2+ | 0.906 | −0.142 | −0.071 |
Na+ | 0.914 | 0.047 | 0.160 |
K+ | 0.833 | −0.372 | −0.024 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdał, A.; Wałęga, A.; Kowalik, T.; Cupak, A. Assessment of the Impact of Forestry and Settlement-Forest Use of the Catchments on the Parameters of Surface Water Quality: Case Studies for Chechło Reservoir Catchment, Southern Poland. Water 2019, 11, 964. https://doi.org/10.3390/w11050964
Bogdał A, Wałęga A, Kowalik T, Cupak A. Assessment of the Impact of Forestry and Settlement-Forest Use of the Catchments on the Parameters of Surface Water Quality: Case Studies for Chechło Reservoir Catchment, Southern Poland. Water. 2019; 11(5):964. https://doi.org/10.3390/w11050964
Chicago/Turabian StyleBogdał, Andrzej, Andrzej Wałęga, Tomasz Kowalik, and Agnieszka Cupak. 2019. "Assessment of the Impact of Forestry and Settlement-Forest Use of the Catchments on the Parameters of Surface Water Quality: Case Studies for Chechło Reservoir Catchment, Southern Poland" Water 11, no. 5: 964. https://doi.org/10.3390/w11050964