Using Steel Slag for Dissolved Phosphorus Removal: Insights from a Designed Flow-Through Laboratory Experimental Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Equipment Description
2.2. Flow-Through Experiments
2.2.1. Preparation
2.2.2. Sampling and Measurement
2.2.3. Flow Rate Measurement
2.3. Data Analysis
3. Results and Discussion
3.1. Dynamic Changes of Phosphorus Removal by Steel Slag
3.2. Total P Removal under Varied Steel Slag Mass and Phosphorus Input
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef]
- Schindler, D.W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 2006, 51, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Bennett, E.; Carpenter, S.; Caraco, N. Human impact on erodable phosphorus and eutrophication: A global perspective. BioScience 2001, 51, 227–234. [Google Scholar] [CrossRef]
- Maccoux, M.J.; Dove, A.; Backus, S.M.; Dolan, D.M. Total and soluble reactive phosphorus loadings to Lake Erie. J. Great Lakes Res. 2016, 42, 1151–1165. [Google Scholar] [CrossRef] [Green Version]
- Dolan, D.M.; Chapra, S.C. Great Lakes total phosphorus revisited: 1. Loading analysis and update (1994–2008). J. Great Lakes Res. 2012, 38, 730–740. [Google Scholar] [CrossRef]
- Penn, C.J.; Bryant, R.B.; Kleinman, P.J.A.; Allen, A.L. Removing dissolved phosphorus from drainage ditch water with phosphorus spring materials. J. Soil Water Conserv. 2007, 62, 269–276. [Google Scholar]
- Stoner, D.; Penn, C.J.; McGrath, J.; Warren, J. Phosphorus Removal with By-Products in a Flow-Through Setting. J. Environ. Qual. 2012, 41, 654–663. [Google Scholar] [CrossRef]
- Gustafsson, J.P.; Renman, A.; Renman, G.; Poll, K. Phosphate removal by mineral-based sorbents used in filters for small-scale wastewater treatment. Water Res. 2008, 42, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Hedstrom, A. Reactive filter systems for small scale wastewater treatment: A literature review. Vatten 2006, 62, 253–263. [Google Scholar]
- Lyngsie, G.; Borggaard, O.; Hansen, H.C.B. A three-step test of phosphate sorption efficiency of potential agricultural drainage filter materials. Water Res. 2014, 51, 256–265. [Google Scholar] [CrossRef]
- Feyereisen, G.W.; Francesconi, W.; Smith, D.R.; Papiernik, S.K.; Krueger, E.S.; Wente, C.D. Effect of Replacing Surface Inlets with Blind or Gravel Inlets on Sediment and Phosphorus Subsurface Drainage Losses. J. Environ. Qual. 2015, 44, 594–604. [Google Scholar] [CrossRef] [PubMed]
- Shilton, A.; Chen, L.; Elemetri, I.; Pratt, C.; Pratt, S. Active slag filters: Rapid assessment of phosphorus removal efficiency from effluent as a function of retention time. Environ. Technol. 2013, 34, 195–200. [Google Scholar] [CrossRef]
- Penn, C.J.; Bryant, R.B.; Callahan, M.P.; McGrath, J. Use of Industrial By-products to Sorb and Retain Phosphorus. Commun. Soil Sci. Plant Anal. 2011, 42, 633–644. [Google Scholar] [CrossRef]
- Pratt, C.; Shilton, A.; Pratt, S.; Haverkamp, R.G.; Bolan, N. Phosphorus Removal Mechanisms in Active Slag Filters Treating Waste Stabilization Pond Effluent. Environ. Sci. Technol. 2007, 41, 3296–3301. [Google Scholar] [CrossRef]
- Penn, C.J.; Bowen, J.; McGrath, J.; Nairn, R.W.; Fox, G.; Brown, G.; Wilson, S.; Gill, C. Evaluation of a universal flow-through model for predicting and designing phosphorus removal structures. Chemosphere 2016, 151, 345–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, K.W.; Williams, M.R.; Fausey, N.R. Contributions of systematic tile drainage to watershed-scale phosphorus transport. J. Environ. Qual. 2015, 44, 486–494. [Google Scholar] [CrossRef]
- Williams, M.R.; King, K.W.; Fausey, N.R. Contribution of tile drains to basin discharge and nitrogen export in a headwater agricultural watershed Agric. Water Manag. 2015, 158, 42–50. [Google Scholar] [CrossRef]
- Dougherty, W.J.; Fleming, N.K.; Cox, J.W.; Chittleborough, D.J. Phosphorus Transfer in Surface Runoff from Intensive Pasture Systems at Various Scales. J. Environ. Qual. 2004, 33, 1973–1988. [Google Scholar] [CrossRef]
- Smith, D.R.; Francesconi, W.; Livingston, S.J.; Huang, C.-H. Phosphorus losses from monitored fields with conservation practices in the Lake Erie Basin, USA. Ambio 2015, 44, S319–S331. [Google Scholar] [CrossRef] [Green Version]
- Ruark, M.; Madison, A.; Cooley, E.; Stuntebeck, T.; Komiskey, M. Phosphorus loss from tile drains: Should we be concerned? In Proceedings of the 2012 Wisconsin Crop Management Conference, Madison, WI, USA, 10–12 January 2012; Volume 51, pp. 9–14. Available online: https://extension.soils.wisc.edu/wp-content/uploads/sites/68/2014/02/2012_wcmc_proc.pdf (accessed on 17 December 2018).
- Gentry, L.E.; David, M.B.; Royer, T.V.; Mitchell, C.A.; Starks, K.M. Phosphorus Transport Pathways to Streams in Tile-Drained Agricultural Watersheds. J. Environ. Qual. 2007, 36, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Penn, C.J.; McGrath, J.; Rounds, E.; Fox, G.; Heeren, D. Trapping Phosphorus in Runoff with a Phosphorus Removal Structure. J. Environ. Qual. 2012, 41, 672–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barca, C.; Gérente, C.; Meyer, D.; Chazarenc, F.; Andrès, Y. Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. Water Res. 2012, 46, 2376–2384. [Google Scholar] [CrossRef] [PubMed]
- Penn, C.; Livingston, S.; Shedekar, V.; King, K.; Williams, M. Performance of Field-Scale Phosphorus Removal Structures Utilizing Steel Slag for Treatment of Subsurface Drainage. Water 2020, 12, 443. [Google Scholar] [CrossRef] [Green Version]
- Penn, C.J.; Bowen, J.M. Design and Construction of Phosphorus Removal Structures for Improving Water Quality; Springer: Berlin/Heidelberg, Germany, 2018; pp. 91–94. [Google Scholar]
- Claveau-Mallet, D.; Wallace, S.; Comeau, Y. Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters. Water Res. 2013, 47, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- Drizo, A.; Comeau, Y.; Forget, C.; Chapuis, R.P. Phosphorus Saturation Potential: A Parameter for Estimating the Longevity of Constructed Wetland Systems. Environ. Sci. Technol. 2002, 36, 4642–4648. [Google Scholar] [CrossRef] [PubMed]
- Bowden, L.I.; Johnson, K.L.; Jarvis, A.; Robinson, H.; Ghazireh, N.; Younger, P. The use of basic oxygen steel furnace slag (bos) as a high surface area media for the removal of iron from circum neutral mine water. J. Am. Soc. Min. Reclam. 2006, 2006, 234–246. [Google Scholar] [CrossRef] [Green Version]
- Eveborn, D.; Gustafsson, J.P.; Hesterberg, D.; Hillier, S. XANES Speciation of P in Environmental Samples: An Assessment of Filter Media for on-Site Wastewater Treatment. Environ. Sci. Technol. 2009, 43, 6515–6521. [Google Scholar] [CrossRef] [Green Version]
- Klimeski, A.; Uusitalo, R.; Turtola, E. Variations in phosphorus retention by a solid material while scaling up its application. Environ. Technol. Innov. 2015, 4, 285–298. [Google Scholar] [CrossRef]
- Penn, C.J.; McGrath, J. Predicting Phosphorus Sorption onto Steel Slag Using a Flow-through approach with Application to a Pilot Scale System. J. Water Resour. Prot. 2011, 3, 235–244. [Google Scholar] [CrossRef] [Green Version]
- IBM. IBM SPSS Statistics for Windows, Version 19.0; IBM Corporation: Armonk, NY, USA, 2010. [Google Scholar]
- Systat Sigma Plot. Version 10.0; Systat Software Inc.: San Jose, CA, USA, 2008. [Google Scholar]
- Hua, G.; Salo, M.W.; Schmit, C.G.; Hay, C.H. Nitrate and phosphate removal from agricultural subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters. Water Res. 2016, 102, 180–189. [Google Scholar] [CrossRef]
- Yin, H.; Yan, X.; Gu, X. Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands. Water Res. 2017, 115, 329–338. [Google Scholar] [CrossRef] [PubMed]
- McGrath, J.; Penn, C.J.; Coale, F.J. A modelling approach to the design of in-situ agricultural drainage filters. Soil Use Manag. 2012, 29, 155–161. [Google Scholar] [CrossRef]
- Barca, C.; Meyer, D.; Liira, M.; Drissen, P.; Comeau, Y.; Andrès, Y.; Chazarenc, F. Steel slag filters to upgrade phosphorus removal in small wastewater treatment plants: Removal mechanisms and performance. Ecol. Eng. 2014, 68, 214–222. [Google Scholar] [CrossRef]
- Penn, C.; Chagas, I.; Klimeski, A.; Lyngsie, G. A Review of Phosphorus Removal Structures: How to Assess and Compare Their Performance. Water 2017, 9, 583. [Google Scholar] [CrossRef]
- Algoazany, A.S.; Kalita, P.K.; Czapar, G.F.; Mitchell, J.K. Phosphorus Transport through Subsurface Drainage and Surface Runoff from a Flat Watershed in East Central Illinois, USA. J. Environ. Qual. 2007, 36, 681–693. [Google Scholar] [CrossRef]
Scenario | Filter Segment | Filter Length (m) | Steel Slag Mass (kg) | RT (s) | Inflow P = 2.5 mg L−1 (CPrem = k*CPadd+b) | Inflow P = 5.0 mg L−1 (CPrem = k*CPadd+b) | ||||
---|---|---|---|---|---|---|---|---|---|---|
k | b | R2 | k | b | R2 | |||||
Single | S1 | 1.0 | 15 | 33 | 0.20 | 8.53 | 0.99 | 0.11 | 16.95 | 0.98 |
S2 | 0.26 | 3.34 | 0.98 | 0.18 | 8.37 | 0.95 | ||||
S3 | 0.37 | 0.50 | 0.99 | 0.24 | 3.02 | 0.99 | ||||
S4 | 0.45 | 0.04 | 0.99 | 0.33 | −0.78 | 0.99 | ||||
Double | S1 + S2 | 2.0 | 30 | 66 | 0.41 | 4.81 | 0.99 | 0.27 | 1.11 | 0.97 |
S2 + S3 | 0.53 | 1.30 | 0.99 | 0.38 | 4.39 | 0.98 | ||||
S3 + S4 | 0.65 | −0.07 | 0.99 | 0.49 | 0.49 | 0.99 | ||||
Triple | S1 + S2 + S3 | 3.0 | 45 | 99 | 0.63 | 2.18 | 0.99 | 0.45 | 6.38 | 0.98 |
S2 + S3 + S4 | 0.74 | 0.33 | 0.99 | 0.59 | 1.68 | 0.99 | ||||
Quadruple | S1 + S2 + S3 + S4 | 4.0 | 60 | 132 | 0.80 | 0.79 | 0.99 | 0.64 | 2.25 | 0.99 |
Filter Segment | Inflow | 2.5 mg L−1 | 5.0 mg L−1 | ||||
---|---|---|---|---|---|---|---|
Outflow | P (mg L−1) | Ca2+ (mg L−1) | pH | P (mg L−1) | Ca2+ (mg L−1) | pH | |
S1 | Range | 0–2.3 | 5.1–50.4 | 7.6–10.2 | 0.5–4.9 | 3.8–50.5 | 7.3–10.6 |
Mean | 1.8 | 7.7 | 8.8 | 4.1 | 8.1 | 8.0 | |
S2 | Range | 0–1.6 | 8.6–53.2 | 8.0–10.7 | 0.4–4.4 | 7.5–57.7 | 7.9–10.9 |
Mean | 1.3 | 13.1 | 9.5 | 3.3 | 11.3 | 9.3 | |
S3 | Range | 1.0–1.2 | 10.9–74.4 | 7.9–10.8 | 0.4–3.8 | 7.9–50.1 | 7.4–10.8 |
Mean | 0.8 | 16.5 | 9.7 | 2.5 | 12.7 | 8.7 | |
S4 | Range | 0–0.7 | 14.4–63.4 | 8.2–10.6 | 0.4–2.7 | 5.0–37.1 | 7.8–10.8 |
Mean | 0.5 | 21.1 | 9.7 | 1.7 | 12.3 | 9.1 |
Steel Slag Mass (kg) | P conc. (mg L−1) | RT | Flow Rate (ml min−1) | P Removal (mg kg−1) | Experiment Type | References |
---|---|---|---|---|---|---|
2.1 | 0–10 | 2.4–9.5 h | 2.5–10 | 3700 | Laboratory Flow-through | Hua et al. [34] |
18.3 | 20 | 24 h | 2.1–2.8 | 2200 | Laboratory Flow-through | Drizo et al. [27] |
20 | 0.05–5.3 | 5–24 min | 333–1167 | 3200 | Laboratory Flow-through | Klimeski et al. [30] |
45.36 | 10 | 24 h | 20 | 910 | Laboratory Flow-through | Barca et al. [37] |
45.36 | 10 | 24 h | 26.7 | 810 | Laboratory Flow-through | |
60 | 0.84–4.87 | 0.5–2 min | 7800 | 61 | Laboratory Flow-through | Current study |
454 | 0.11–0.60 | 10 min | 0.4–6.4 | 59 | Laboratory Flow-through | Penn et al. [31] |
2712 | 0.50 | 19.3 min | 29.8 | 25.9 | Field Flow-through | Penn et al. [22] |
7000 | 0.05–0.25 | 10 min–50 h | 600–180,000 | 60 | Field Flow-through | Klimeski et al. [30] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Penn, C.; Huang, C.-h.; Livingston, S.; Yan, J. Using Steel Slag for Dissolved Phosphorus Removal: Insights from a Designed Flow-Through Laboratory Experimental Structure. Water 2020, 12, 1236. https://doi.org/10.3390/w12051236
Wang L, Penn C, Huang C-h, Livingston S, Yan J. Using Steel Slag for Dissolved Phosphorus Removal: Insights from a Designed Flow-Through Laboratory Experimental Structure. Water. 2020; 12(5):1236. https://doi.org/10.3390/w12051236
Chicago/Turabian StyleWang, Linhua, Chad Penn, Chi-hua Huang, Stan Livingston, and Junhua Yan. 2020. "Using Steel Slag for Dissolved Phosphorus Removal: Insights from a Designed Flow-Through Laboratory Experimental Structure" Water 12, no. 5: 1236. https://doi.org/10.3390/w12051236