# Levee Breaching: A New Extension to the LISFLOOD-FP Model

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. Levee Breach Module

#### 2.2. Synthetic Test Description

#### 2.3. Secchia Inundation

#### 2.4. November 1951 Polesine Catastrophic Flood of the Po River

## 3. Results

#### 3.1. Synthetic Tests

#### 3.2. Secchia Inundation

#### 3.3. November 1951 Polesine Catastrophic Flood, Po River

## 4. Discussion

#### 4.1. Synthetic Cases

#### 4.2. Historic Events Simulations

#### 4.3. Assumption and Limitation of the Levee Failure Extension

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Centre for Research on the Epidemiology of Disasters. 2018 Review of Disaster Events 2019. Available online: http://www.cred.be/publications (accessed on 22 January 2020).
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earth’s Future
**2017**, 5, 171–182. [Google Scholar] [CrossRef] - Vorogushyn, S.; Merz, B.; Apel, H. Development of dike fragility curves for piping and micro-instability breach mechanisms. Nat. Hazards Earth Syst. Sci.
**2009**, 9, 1383–1401. [Google Scholar] [CrossRef] - Marijnissen, R.; Kok, M.; Kroeze, C.; van Loon-Steensma, J. Re-evaluating safety risks of multifunctional dikes with a probabilistic risk framework. Nat. Hazards Earth Syst. Sci.
**2019**, 19, 737–756. [Google Scholar] [CrossRef] [Green Version] - van Mierlo, M.; Vrouwenvelder, A.; Calle, E.; Vrijling, J.; Jonkman, S.N.; de Bruijn, K.; Weerts, A.H. Assessment of flood risk accounting for river system behaviour. International. Int. J. River Basin Manag.
**2007**, 5, 93–104. [Google Scholar] [CrossRef] - De Bruijn, K.M.; Diermanse, F.L.; Van Der Doef, M.; Klijn, F. Hydrodynamic System Behaviour: Its Analysis and Implications for Flood Risk Management; EDP Sciences: Les Ulis, France, 2016. [Google Scholar]
- Ludy, J.; Kondolf, G.M. Flood risk perception in lands “protected” by 100-year levees. Nat. Hazards
**2012**, 61, 829–842. [Google Scholar] [CrossRef] - Domeneghetti, A.; Carisi, F.; Castellarin, A.; Brath, A. Evolution of flood risk over large areas: Quantitative assessment for the Po river. J. Hydrol.
**2015**, 527, 809–823. [Google Scholar] [CrossRef] - Andersen, C.F. The New Orleans Hurricane Protection System: What Went Wrong and Why; A report; ASCE: Reston, VA, USA, 2007. [Google Scholar]
- Larson, L.W. The Great USA Flood of 1993. 1996. Available online: https://www.nwrfc.noaa.gov/floods/papers/oh_2/great.htm (accessed on 17 February 2020).
- Carisi, F.; Schröter, K.; Domeneghetti, A.; Kreibich, H.; Castellarin, A. Development and assessment of uni- and multivariable flood loss models for Emilia-Romagna (Italy). Nat. Hazards Earth Syst. Sci.
**2018**, 18, 2057–2079. [Google Scholar] [CrossRef] [Green Version] - Vorogushyn, S.; Bates, P.D.; de Bruijn, K.; Castellarin, A.; Kreibich, H.; Priest, S.; Schröter, K.; Bagli, S.; Blöschl, G.; Domeneghetti, A. Evolutionary leap in large-scale flood risk assessment needed. Wiley Interdiscip. Rev. Water
**2018**, 5, e1266. [Google Scholar] [CrossRef] [Green Version] - Sanders, B.F.; Pau, J.C.; Jaffe, D.A. Passive and active control of diversions to an off-line reservoir for flood stage reduction. Adv. Water Resour.
**2006**, 29, 861–871. [Google Scholar] [CrossRef] - Vorogushyn, S.; Lindenschmidt, K.-E.; Kreibich, H.; Apel, H.; Merz, B. Analysis of a detention basin impact on dike failure probabilities and flood risk for a channel-dike-floodplain system along the river Elbe, Germany. J. Hydrol.
**2012**, 436, 120–131. [Google Scholar] [CrossRef] [Green Version] - Castellarin, A.; Domeneghetti, A.; Brath, A. Identifying robust large-scale flood risk mitigation strategies: A quasi-2D hydraulic model as a tool for the Po river. Phys. Chem. Earth Parts A/B/C
**2011**, 36, 299–308. [Google Scholar] [CrossRef] - Viero, D.P.; D’Alpaos, A.; Carniello, L.; Defina, A. Mathematical modeling of flooding due to river bank failure. Adv. Water Resour.
**2013**, 59, 82–94. [Google Scholar] [CrossRef] - Wu, W. Earthen Embankment Breaching. J. Hydraul. Eng.
**2011**, 137, 1549–1564. [Google Scholar] [CrossRef] - Dazzi, S.; Vacondio, R.; Mignosa, P. Integration of a Levee Breach Erosion Model in a GPU-Accelerated 2D Shallow Water Equations Code. Water Resour. Res.
**2019**, 137, 1549. [Google Scholar] [CrossRef] - Morris, M.W.; Kortenhaus, A.; Visser, P.J.; Hassan, M. Breaching Processes. 2009. Available online: http://www.floodsite.net/html/publications2.asp?by=documentDeliverables&byway=desc&documentType=1 (accessed on 19 March 2020).
- Zhong, Q.; Wu, W.; Chen, S.; Wang, M. Comparison of simplified physically based dam breach models. Nat. Hazards
**2016**, 84, 1385–1418. [Google Scholar] [CrossRef] - Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw.
**2017**, 90, 201–216. [Google Scholar] [CrossRef] - Hunter, N.M.; Bates, P.D.; Horritt, M.S.; Wilson, M.D. Simple spatially-distributed models for predicting flood inundation: A review. Geomorphology
**2007**, 90, 208–225. [Google Scholar] [CrossRef] - Chatterjee, C.; Förster, S.; Bronstert, A. Comparison of hydrodynamic models of different complexities to model floods with emergency storage areas. Hydrol. Process.
**2008**, 22, 4695–4709. [Google Scholar] [CrossRef] - Kamrath, P.; Disse, M.; Hammer, M.; Köngeter, J. Assessment of Discharge through a Dike Breach and Simulation of Flood Wave Propagation. Nat. Hazards
**2006**, 38, 63–78. [Google Scholar] [CrossRef] - Vorogushyn, S.; Merz, B.; Lindenschmidt, K.-E.; Apel, H. A new methodology for flood hazard assessment considering dike breaches. Water Resour. Res.
**2010**, 46, 125. [Google Scholar] [CrossRef] [Green Version] - Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T. Factors controlling hydro-sedimentary response during runoff events in a rural catchment in the humid Spanish zone. Catena
**2010**, 82, 206–217. [Google Scholar] [CrossRef] - Luke, A.; Kaplan, B.; Neal, J.; Lant, J.; Sanders, B.; Bates, P.; Alsdorf, D. Hydraulic modeling of the 2011 New Madrid Floodway activation: A case study on floodway activation controls. Nat. Hazards
**2015**, 77, 1863–1887. [Google Scholar] [CrossRef] - Mazzoleni, M.; Bacchi, B.; Barontini, S.; Di Baldassarre, G.; Pilotti, M.; Ranzi, R. Flooding Hazard Mapping in Floodplain Areas Affected by Piping Breaches in the Po River, Italy. J. Hydrol. Eng.
**2014**, 19, 717–731. [Google Scholar] [CrossRef] - Bates, P.; Horritt, M.S.; Fewtrell, T.J. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol.
**2010**, 387, 33–45. [Google Scholar] [CrossRef] - Neal, J.; Villanueva, I.; Wright, N.; Willis, T.; Fewtrell, T.; Bates, P. How much physical complexity is needed to model flood inundation? Hydrol. Process.
**2012**, 26, 2264–2282. [Google Scholar] [CrossRef] [Green Version] - Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- White, W.R.; Whitehead, E.; Forty, E.J. Extending the Scope of Standard Specifications for Open Channel Flow Gauging Structures. 2000. Available online: http://eprints.hrwallingford.co.uk/891/ (accessed on 13 December 2019).
- Wu, W.; Li, H. A simplified physically-based model for coastal dike and barrier breaching by overtopping flow and waves. Coast. Eng.
**2017**, 130, 1–13. [Google Scholar] [CrossRef] - Brunner, G.W. HEC-RAS River Analysis System. Hydraulic Reference Manual. Version 5.0 2016. Available online: https://www.hec.usace.army.mil/software/hec-ras/documentation.aspx (accessed on 11 January 2019).
- Shustikova, I.; Domeneghetti, A.; Neal, J.; Bates, P.; Castellarin, A. Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography. Hydrol. Sci. J.
**2019**, 1–14. [Google Scholar] [CrossRef] - D’Oria, M.; Mignosa, P.; Tanda, M.G. An inverse method to estimate the flow through a levee breach. Adv. Water Resour.
**2015**, 82, 166–175. [Google Scholar] [CrossRef] - Orlandini, S.; Moretti, G.; Albertson, J.D. Evidence of an emerging levee failure mechanism causing disastrous floods in Italy. Water Resour. Res.
**2015**, 51, 7995–8011. [Google Scholar] [CrossRef] [Green Version] - Vacondio, R.; Aureli, F.; Ferrari, A.; Mignosa, P.; Palù, A.D. Simulation of the January 2014 flood on the Secchia River using a fast and high-resolution 2D parallel shallow-water numerical scheme. Nat. Hazards
**2016**, 80, 103–125. [Google Scholar] [CrossRef] - D’Alpaos, L.; Brath, A.; Fioravante, V.; Gottardi, G.; Mignosa, P.; Orlandini, S. Relazione Tecnico-Scientifica Sulle Cause del Collasso Dell’argine del Fiume Secchia Avvenuto il Giorno 19 Gennaio 2014 Presso la Frazione San Matteo 2014. Available online: http://ambiente.regione.emilia-romagna.it/geologia/notizie/notizie-2014/fiume-secchia (accessed on 18 January 2020).
- Horritt, M.S.; Bates, P.D.; Fewtrell, T.J.; Mason, D.C.; Wilson, M.D. Modelling the hydraulics of the Carlisle 2005 flood event. Proc. Inst. Civ. Eng. -Water Manag.
**2010**, 163, 273–281. [Google Scholar] [CrossRef] - Viero, D.P.; Roder, G.; Matticchio, B.; Defina, A.; Tarolli, P. Floods, landscape modifications and population dynamics in anthropogenic coastal lowlands: The Polesine (northern Italy) case study. Sci. Total Environ.
**2019**, 651, 1435–1450. [Google Scholar] [CrossRef] [PubMed] - Masoero, A.; Claps, P.; Asselman, N.E.M.; Mosselman, E.; Di Baldassarre, G. Reconstruction and analysis of the Po River inundation of 1951. Hydrol. Process.
**2013**, 27, 1341–1348. [Google Scholar] [CrossRef] [Green Version] - SIMPO. Studio E Progettazione Di Massima Delle Sistemazioni Idrauliche Dell’asta Principale Del Po, Dalle Sorgenti Alla Foce, Finalizzata Alla Difesa Ed Alla Conservazione Del Suolo E Nella Utilizzazione Delle Risorse Idriche; Magistrato del Po: Parma, Italy, 1982. [Google Scholar]
- Contributors OSM. OpenStreetMap; Packt Publishing Ltd.: Birmingham, UK, 2012. [Google Scholar]
- Sofia, G.; Fontana, G.D.; Tarolli, P. High-resolution topography and anthropogenic feature extraction: Testing geomorphometric parameters in floodplains. Hydrol. Process.
**2014**, 28, 2046–2061. [Google Scholar] [CrossRef] - Krüger, T. Algorithms for Detecting and Extracting Dikes from Digital Terrain Models, 10th ed.; Car, A., Griesebner, G., Strobl, J., Eds.; Wichmann: Berlin, Germany, 2010. [Google Scholar]
- Wing, O.E.; Bates, P.D.; Neal, J.C.; Sampson, C.C.; Smith, A.M.; Quinn, N.; Shustikova, I.; Domeneghetti, A.; Gilles, D.W.; Goska, R.; et al. A new automated method for improved flood defense representation in large-scale hydraulic models. Water Resour. Res.
**2019**. [Google Scholar] [CrossRef] [Green Version] - Di Baldassare, G.; Castellarin, A.; Molnar, P.; Brath, A. Probability-weighted hazard maps for comparing different flood risk management strategies: A case study. Nat. Hazards
**2009**, 50, 479–496. [Google Scholar] [CrossRef]

**Figure 1.**Orthogonal cross-sections of the levee and breach schematics: (

**a**) water level in the river reaches the breach threshold (user defined); (

**b**) the breach is fully formed reaching the breach depth (user defined); (

**c**) outflow from the breach starts inundating the floodplain (Equations (1) or (2)).

**Figure 2.**Synthetic DEM with boundary conditions (BC) used in both models (

**a**); terrain cross-sections as reproduced by HEC-RAS and LISFLOOD-FP (LFP) from north to south (

**b**).

**Figure 4.**Study area of the Secchia flood: the study area location (

**a**); the location of upstream boundary condition (BC), the river channel, breach and floodplain (

**b**).

**Figure 5.**Polesine flood study area (

**a**). Study area extent, the outline of the surveyed flood extent, breaches and gauging station locations (

**b**).

**Figure 6.**Flow through the breach simulated by HEC-RAS and LISFLOOD-FP with different roughness coefficients n under unsteady boundary conditions.

**Figure 9.**Results of the Polesine flood simulation. Maximum water depth at each cell compared to surveyed flood extent.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Shustikova, I.; Neal, J.C.; Domeneghetti, A.; Bates, P.D.; Vorogushyn, S.; Castellarin, A.
Levee Breaching: A New Extension to the LISFLOOD-FP Model. *Water* **2020**, *12*, 942.
https://doi.org/10.3390/w12040942

**AMA Style**

Shustikova I, Neal JC, Domeneghetti A, Bates PD, Vorogushyn S, Castellarin A.
Levee Breaching: A New Extension to the LISFLOOD-FP Model. *Water*. 2020; 12(4):942.
https://doi.org/10.3390/w12040942

**Chicago/Turabian Style**

Shustikova, Iuliia, Jeffrey C. Neal, Alessio Domeneghetti, Paul D. Bates, Sergiy Vorogushyn, and Attilio Castellarin.
2020. "Levee Breaching: A New Extension to the LISFLOOD-FP Model" *Water* 12, no. 4: 942.
https://doi.org/10.3390/w12040942