# Fluid Structure Interaction of 2D Objects through a Coupled KBC-Free Surface Model

## Abstract

**:**

## 1. Introduction

## 2. Numerical Model

#### 2.1. Lattice Boltzmann Method

#### The Smagorinsky Subgrid Model

#### 2.2. The KBC Model

#### 2.3. Fluid Structure Interaction and Moving Boundary Treatment

#### 2.4. The Free-Surface Model

## 3. Model Validation

## 4. Results

## 5. Conclusions

## Funding

## Conflicts of Interest

## References

- Faltinsen, O.M. Hydroelastic slamming. J. Mar. Sci. Technol.
**2000**, 5, 49–65. [Google Scholar] [CrossRef] - Facci, A.L.; Panciroli, R.; Ubertini, S.; Porfiri, M. Assessment of PIV-based analysis of water entry problems through synthetic numerical datasets. J. Fluids Struct.
**2015**, 55, 484–500. [Google Scholar] [CrossRef] [Green Version] - Panciroli, R.; Biscarini, C.; Falcucci, G.; Jannelli, E.; Ubertini, S. Live monitoring of the distributed strain field in impulsive events through fiber Bragg gratings. J. Fluids Struct.
**2016**, 61, 60–75. [Google Scholar] [CrossRef] - Erturk, A.; Delporte, G. Underwater thrust and power generation using flexible piezoelectric composites: An experimental investigation toward self-powered swimmer-sensor platforms. Smart Mater. Struct.
**2011**, 20, 125013. [Google Scholar] [CrossRef] - Batra, R.; Porfiri, M.; Spinello, D. Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater. Struct.
**2007**, 16, R23. [Google Scholar] [CrossRef] - De Tullio, M.; Cristallo, A.; Balaras, E.; Verzicco, R. Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J. Fluid Mech.
**2009**, 622, 259–290. [Google Scholar] [CrossRef] [Green Version] - Wang, L.; Currao, G.M.; Han, F.; Neely, A.J.; Young, J.; Tian, F.B. An immersed boundary method for fluid–structure interaction with compressible multiphase flows. J. Comput. Phys.
**2017**, 346, 131–151. [Google Scholar] [CrossRef] [Green Version] - Calderer, A.; Guo, X.; Shen, L.; Sotiropoulos, F. Fluid—Structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines. J. Comput. Phys.
**2018**, 355, 144–175. [Google Scholar] [CrossRef] - Ren, Z.; Wang, Z.; Stern, F.; Judge, C.; Ikeda-Gilbert, C. Vertical Water Entry of a Flexible Wedge into Calm Water: A Fluid-Structure Interaction Experiment. J. Ship Res.
**2019**, 63, 41–55. [Google Scholar] [CrossRef] - Facci, A.L.; Falcucci, G.; Agresta, A.; Biscarini, C.; Jannelli, E.; Ubertini, S. Fluid Structure Interaction of Buoyant Bodies with Free Surface Flows: Computational Modelling and Experimental Validation. Water
**2019**, 11, 1048. [Google Scholar] [CrossRef] [Green Version] - Panciroli, R.; Abrate, S.; Minak, G.; Zucchelli, A. Hydroelasticity in water-entry problems: Comparison between experimental and SPH results. Compos. Struct.
**2012**, 94, 532–539. [Google Scholar] [CrossRef] - Khayyer, A.; Gotoh, H.; Falahaty, H.; Shimizu, Y. An enhanced ISPH–SPH coupled method for simulation of incompressible fluid—Elastic structure interactions. Comput. Phys. Commun.
**2018**, 232, 139–164. [Google Scholar] [CrossRef] - Owen, D.; Leonardi, C.; Feng, Y. An efficient framework for fluid–structure interaction using the lattice Boltzmann method and immersed moving boundaries. Int. J. Numer. Methods Eng.
**2011**, 87, 66–95. [Google Scholar] [CrossRef] - De Rosis, A. Ground-induced lift enhancement in a tandem of symmetric flapping wings: Lattice Boltzmann-immersed boundary simulations. Comput. Struct.
**2015**, 153, 230–238. [Google Scholar] [CrossRef] - Aureli, M.; Prince, C.; Porfiri, M.; Peterson, S.D. Energy harvesting from base excitation of ionic polymer metal composites in fluid environments. Smart Mater. Struct.
**2009**, 19, 015003. [Google Scholar] [CrossRef] - Panciroli, R. Hydroelastic impacts of deformable wedges. In Dynamic Failure of Composite and Sandwich Structures; Springer: Dordrecht, The Netherlands, 2013; pp. 1–45. [Google Scholar]
- Panciroli, R.; Porfiri, M. Analysis of hydroelastic slamming through particle image velocimetry. J. Sound Vib.
**2015**, 347, 63–78. [Google Scholar] [CrossRef] - Panciroli, R.; Ubertini, S.; Minak, G.; Jannelli, E. Experiments on the Dynamics of Flexible Cylindrical Shells Impacting on a Water Surface. Exp. Mech.
**2015**, 55, 1537–1550. [Google Scholar] [CrossRef] - Panahi, R. Simulation of water-entry and water-exit problems using a moving mesh algorithm. J. Theor. Appl. Mech.
**2012**, 42, 79–92. [Google Scholar] [CrossRef] [Green Version] - Cheon, J.S.; Jang, B.S.; Yim, K.H.; Lee, H.D.; Koo, B.Y.; Ju, H. A study on slamming pressure on a flat stiffened plate considering fluid–structure interaction. J. Mar. Sci. Technol.
**2016**, 21, 309–324. [Google Scholar] [CrossRef] - Zhao, X.; Gao, Y.; Cao, F.; Wang, X. Numerical modeling of wave interactions with coastal structures by a constrained interpolation profile/immersed boundary method. Int. J. Numer. Methods Fluids
**2016**, 81, 265–283. [Google Scholar] [CrossRef] - Falcucci, G.; Aureli, M.; Ubertini, S.; Porfiri, M. Transverse harmonic oscillations of laminae in viscous fluids: A lattice Boltzmann study. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
**2011**, 369, 2456–2466. [Google Scholar] [CrossRef] [Green Version] - De Rosis, A.; Falcucci, G.; Ubertini, S.; Ubertini, F.; Succi, S. Lattice Boltzmann analysis of fluid-structure interaction with moving boundaries. Commun. Comput. Phys.
**2013**, 13, 823–834. [Google Scholar] [CrossRef] - De Rosis, A.; Falcucci, G.; Porfiri, M.; Ubertini, F.; Ubertini, S. Hydroelastic analysis of hull slamming coupling lattice Boltzmann and finite element methods. Comput. Struct.
**2014**, 138, 24–35. [Google Scholar] [CrossRef] - De Rosis, A.; Falcucci, G.; Ubertini, S.; Ubertini, F. Aeroelastic study of flexible flapping wings by a coupled lattice Boltzmann-finite element approach with immersed boundary method. J. Fluids Struct.
**2014**, 49, 516–533. [Google Scholar] [CrossRef] - Zarghami, A.; Falcucci, G.; Jannelli, E.; Succi, S.; Porfiri, M.; Ubertini, S. Lattice Boltzmann modeling of water entry problems. Int. J. Mod. Phys. C
**2014**, 25, 1441012. [Google Scholar] [CrossRef] - Dorschner, B.; Chikatamarla, S.S.; Bösch, F.; Karlin, I.V. Grad’s approximation for moving and stationary walls in entropic lattice Boltzmann simulations. J. Comput. Phys.
**2015**, 295, 340–354. [Google Scholar] [CrossRef] - Dorschner, B.; Chikatamarla, S.S.; Karlin, I.V. Entropic multirelaxation-time lattice Boltzmann method for moving and deforming geometries in three dimensions. Phys. Rev. E
**2017**, 95, 063306. [Google Scholar] [CrossRef] [Green Version] - Di Ilio, G.; Dorschner, B.; Bella, G.; Succi, S.; Karlin, I.V. Simulation of turbulent flows with the entropic multirelaxation time lattice Boltzmann method on body-fitted meshes. J. Fluid Mech.
**2018**, 849, 35–56. [Google Scholar] [CrossRef] - Karlin, I.V.; Bösch, F.; Chikatamarla, S. Gibbs’ principle for the lattice-kinetic theory of fluid dynamics. Phys. Rev. E
**2014**, 90, 031302. [Google Scholar] [CrossRef] [PubMed] - Thuerey, N. Physically based Animation of Free Surface Flows with the Lattice Boltzmann Method. Ph.D. Thesis, University of Erlangen, Erlangen, Germany, 2007. [Google Scholar]
- Miao, G. Hydrodynamic Forces and Dynamic Responses of Circular Cylinders in Wave Zones. Ph.D. Thesis, Division of Marine Hydrodynamics, The Norwegian Institute of Technology, University of Trondheim, Trondheim, Norway, 1988. [Google Scholar]
- Zhu, X.; Faltinsen, O.M.; Hu, C. Water Entry and Exit of a Horizontal Circular Cylinder. J. Offshore Mech. Arct. Eng.
**2006**, 129, 253–264. [Google Scholar] [CrossRef] - Sagaut, P. Toward advanced subgrid models for Lattice-Boltzmann-based Large-eddy simulation: Theoretical formulations. Comput. Math. Appl.
**2010**, 59, 2194–2199. [Google Scholar] [CrossRef] [Green Version] - Guo, M.; Tang, X.; Su, Y.; Li, X.; Wang, F. Applications of Three-Dimensional LBM-LES Combined Model for Pump Intakes. Commun. Comput. Phys.
**2018**, 24, 104–122. [Google Scholar] [CrossRef] [Green Version] - Benzi, R.; Succi, S.; Vergassola, M. The Lattice Boltzmann Equation: Theory and Applications. Phys. Rep.
**1992**, 222, 145–197. [Google Scholar] [CrossRef] - Karlin, I.; Ferrante, A.; Öttinger, H. Perfect entropy functions of the Lattice Boltzmann method. Europhys. Lett.
**1999**, 47, 182–188. [Google Scholar] [CrossRef] [Green Version] - Succi, S. The Lattice Boltzmann Equation: For Complex States of Flowing Matter; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Xie, C.; Zhang, J.; Bertola, V.; Wang, M. Lattice Boltzmann modeling for multiphase viscoplastic fluid flow. J. Non-Newton. Fluid Mech.
**2016**, 234, 118–128. [Google Scholar] [CrossRef] - Di Ilio, G.; Chiappini, D.; Ubertini, S.; Bella, G.; Succi, S. Fluid flow around NACA 0012 airfoil at low-Reynolds numbers with hybrid lattice Boltzmann method. Comput. Fluids
**2018**, 166, 200–208. [Google Scholar] [CrossRef] - Di Ilio, G.; Chiappini, D.; Ubertini, S.; Bella, G.; Succi, S. A moving-grid approach for fluid–structure interaction problems with hybrid lattice Boltzmann method. Comput. Phys. Commun.
**2019**, 234, 137–145. [Google Scholar] [CrossRef] - Aidun, C.K.; Clausen, J.R. Lattice-Boltzmann method for complex flows. Ann. Rev. Fluid Mech.
**2010**, 42, 439–472. [Google Scholar] [CrossRef] - Sbragaglia, M.; Benzi, R.; Biferale, L.; Succi, S.; Sugiyama, K.; Toschi, F. Generalized lattice Boltzmann method with multirange pseudopotential. Phys. Rev. E
**2007**, 75, 026702. [Google Scholar] [CrossRef] [Green Version] - Fernandino, M.; Beronov, K.; Ytrehus, T. Large eddy simulation of turbulent open duct flow using a lattice Boltzmann approach. Math. Comput. Simul.
**2009**, 79, 1520–1526. [Google Scholar] [CrossRef] - Bösch, F.; Chikatamarla, S.S.; Karlin, I.V. Entropic multirelaxation lattice Boltzmann models for turbulent flows. Phys. Rev. E
**2015**, 92, 043309. [Google Scholar] [CrossRef] [PubMed] - Dorschner, B.; Frapolli, N.; Chikatamarla, S.S.; Karlin, I.V. Grid refinement for entropic lattice Boltzmann models. Phys. Rev. E
**2016**, 94, 053311. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Dorschner, B.; Bösch, F.; Chikatamarla, S.S.; Boulouchos, K.; Karlin, I.V. Entropic multi-relaxation time lattice Boltzmann model for complex flows. J. Fluid Mech.
**2016**, 801, 623–651. [Google Scholar] [CrossRef] - Kupershtokh, A.; Medvedev, D.; Karpov, D. On equations of state in a lattice Boltzmann method. Comput. Math. Appl.
**2009**, 58, 965–974. [Google Scholar] [CrossRef] [Green Version] - Chikatamarla, S.S.; Ansumali, S.; Karlin, I.V. Grad’s approximation for missing data in lattice Boltzmann simulations. EPL Europhys. Lett.
**2006**, 74, 215. [Google Scholar] [CrossRef] [Green Version] - Ginzburg, I.; Steiner, K. A free-surface lattice Boltzmann method for modelling the filling of expanding cavities by Bingham fluids. Philos. Trans. R. Soc. Lond. A
**2002**, 360, 453–466. [Google Scholar] [CrossRef] - Thürey, N.; Rüde, U. Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids. Comput. Vis. Sci.
**2009**, 12, 247–263. [Google Scholar] [CrossRef] - Körner, C.; Thies, M.; Hofmann, T.; Thürey, N.; Rüde, U. Lattice Boltzmann model for free surface flow for modeling foaming. J. Stat. Phys.
**2005**, 121, 179–196. [Google Scholar] [CrossRef] - Janssen, C.; Krafczyk, M. A lattice Boltzmann approach for free-surface-flow simulations on non-uniform block-structured grids. Comput. Math. Appl.
**2010**, 59, 2215–2235. [Google Scholar] [CrossRef] [Green Version] - Anderl, D.; Bogner, S.; Rauh, C.; Rüde, U.; Delgado, A. Free surface lattice Boltzmann with enhanced bubble model. Comput. Math. Appl.
**2014**, 67, 331–339. [Google Scholar] [CrossRef] - Thürey, N.; Körner, C.; Rüde, U. Interactive Free Surface Fluids with the Lattice Boltzmann Method; Technical Report05-4; University of Erlangen-Nuremberg: Erlangen, Germany, 2005. [Google Scholar]

**Figure 1.**Obstacle definition into fluid domain. Empty squares represent the fluid nodes, filled squares belong to the obstacle; the red filled circle represents the exact wall position along the ith lattice direction. Continuous red arrows represent the known populations, while the dashed ones represent the ones to be reconstructed before streaming.

**Figure 2.**Schematic representation of refilling procedure. The obstacle, initially located at the dashed cyan line (new position is the solid cyan line) frees some nodes, the gray filled ones, which belonged to the solid. Their new fluid-dynamics properties are copied from both red filled fluid node ${\mathbf{x}}_{f}$ and solid one ${\mathbf{x}}_{s}$.

**Figure 6.**Slamming coefficient as a function of non-dimensional time for the sensitivity matrix reported in Table 3. Black curves are related to low Re, gray ones to high Re. Solid line refers to $D=50\mathrm{LU}$, dashed ones to $D=100\mathrm{LU}$, dotted ones to $D=150\mathrm{LU}$, and dash-dotted ones to $D=200\mathrm{LU}$.

**Figure 7.**Magnification of Figure 6 referring to the first impact phases. Black curves are related to low Re, gray ones to high Re. Solid line refers to $D=50\mathrm{LU}$, dashed ones to $D=100\mathrm{LU}$, dotted ones to $D=150\mathrm{LU}$ and dash-dotted ones to $D=200\mathrm{LU}$.

**Figure 8.**Vorticity plot for different resolution at ${t}^{\U0001f7c9}=1.0$ for Re = 3660: (

**a**–

**d**) the obstacle diameter from $50\mathrm{LU}$ to $200\mathrm{LU}$, respectively.

**Figure 9.**Comparison between experimental results presented by [32] and numerical model at $\mathrm{Fr}=0.4628$. Black dotted line represents experimental findings, solid red line the KBC results, magenta line the BGK without turbulence model, and the blue curve represents the BGK with Smagorinsky sub-grid model.

**Figure 10.**Comparison between experimental results presented by [32] and numerical model at $\mathrm{Fr}=0.5772$. Black dotted line represents experimental findings, solid red line the KBC results, magenta line the BGK without turbulence model, and the blue curve represents the BGK with Smagorinsky sub-grid model.

**Figure 11.**Comparison between experimental results presented by [32] and numerical model at $\mathrm{Fr}=0.6865$. Black dotted line represents experimental findings, solid red line the KBC results, magenta line the BGK without turbulence model, and the blue curve represents the BGK with Smagorinsky sub-grid model.

**Figure 12.**$\gamma $ parameter when the obstacle is completely submerged at ${t}^{\U0001f7c9}=2.4850$ for $\mathrm{Fr}=0.5772$.

**Figure 13.**$\omega $ parameter when the obstacle is completely submerged at ${t}^{\U0001f7c9}=2.4850$ for $\mathrm{Fr}=0.5772$.

**Figure 14.**Vorticity profile for KBC method when the obstacle is completely submerged at ${t}^{\U0001f7c9}=2.4850$ for $\mathrm{Fr}=0.5772$.

**Figure 15.**Vorticity profile for BGK method when the obstacle is completely submerged at ${t}^{\U0001f7c9}=2.4850$ for $\mathrm{Fr}=0.5772$.

**Figure 16.**Schematic representation of the ellipsoidal obstacle with the sensitivity analysis parameters.

**Figure 17.**Slamming coefficient as a function of the ellipse aspect ratio. Solid black line represents aspect ratio of 0.25, dotted black line 0.5, dashed black line the circular obstacle with ${R}_{y}/{R}_{x}=1.0$, solid light gray line the aspect ratio of 2.0, and dotted light gray line the largest aspect ratio of 4.0.

**Figure 18.**Magnification up to ${t}^{\U0001f7c9}=1$ of the slamming coefficient as a function of the ellipse aspect ratio. Solid black line represents aspect ratio of 0.25, dotted black line 0.5, dashed black line the circular obstacle with ${R}_{y}/{R}_{x}=1.0$, solid light gray line the aspect ratio of 2.0, and dotted light gray line the largest aspect ratio of 4.0.

**Figure 20.**Density evolution at different non-dimensional times for different ellipse geometry. The three snapshots for ever radii ratio represent half of wedge wetted, full wetted wedge, and three-quarters of wetted wedge, respectively. The three obstacle penetrations correspond to the same non-dimensional times, more specifically ${t}^{\U0001f7c9}=$ 1.05, 2.10, and 3.10, respectively.

**Figure 21.**Schematic representation of the theoretical instantaneous wetted diameter used in Equation (33).

**Figure 22.**Evolution of the new slamming coefficient as a function of the non-dimensional time. Solid black line represents aspect ratio of 0.25, dotted black line 0.5, dashed black line the circular obstacle with ${R}_{y}/{R}_{x}=1.0$, solid light gray line the aspect ratio of 2.0, and dotted light gray line the largest aspect ratio of 4.0.

$\mathit{D}\left[\mathbf{m}\right]$ | $\mathit{W}\left[\mathbf{m}\right]$ | $\mathit{H}\left[\mathbf{m}\right]$ | ${\mathit{h}}_{0}\left[\mathbf{m}\right]$ |
---|---|---|---|

0.125 | 28.0 | 2.5 | 1.0 |

Case | $\mathit{c}\left(\right)open="["\; close="]">\mathbf{m}/\mathbf{s}$ | Re | $\mathbf{Fr}$ |
---|---|---|---|

1 | 0.5124 | 64050 | 0.4628 |

2 | 0.6390 | 79875 | 0.5772 |

3 | 0.7600 | 95000 | 0.6865 |

**Table 3.**Test matrix for sensitivity analysis at constant $\mathrm{Fr}=0.4628$. $\left[\mathrm{LU}\right]$ means that all the quantities are expressed in non-dimensional units characteristic of the LB framework.

Simlation No. | $\mathit{D}\left[\mathbf{LU}\right]$ | $\mathit{W}\times \mathit{H}\left[\mathbf{LU}\right]$ | ${\mathit{\nu}}_{0}\left[\mathbf{LU}\right]$ | $\mathbf{Re}$ |
---|---|---|---|---|

1 | 50 | 11,200 × 1000 | 0.00440 | 366 |

2 | 50 | 11,200 × 1000 | 0.00044 | 3660 |

3 | 100 | 22,400 × 2000 | 0.00880 | 366 |

4 | 100 | 22,400 × 2000 | 0.00088 | 3660 |

5 | 150 | 33,600 × 3000 | 0.01320 | 366 |

6 | 150 | 33,600 × 3000 | 0.00132 | 3660 |

7 | 200 | 40,000 × 4000 | 0.01760 | 366 |

8 | 200 | 40,000 × 4000 | 0.00176 | 3660 |

Simulation No. | ${\mathit{R}}_{\mathit{y}}/{\mathit{R}}_{\mathit{x}}$ |
---|---|

1 | 0.25 |

2 | 0.50 |

3 | 1.00 |

4 | 2.00 |

5 | 4.00 |

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chiappini, D.
Fluid Structure Interaction of 2D Objects through a Coupled KBC-Free Surface Model. *Water* **2020**, *12*, 1212.
https://doi.org/10.3390/w12041212

**AMA Style**

Chiappini D.
Fluid Structure Interaction of 2D Objects through a Coupled KBC-Free Surface Model. *Water*. 2020; 12(4):1212.
https://doi.org/10.3390/w12041212

**Chicago/Turabian Style**

Chiappini, Daniele.
2020. "Fluid Structure Interaction of 2D Objects through a Coupled KBC-Free Surface Model" *Water* 12, no. 4: 1212.
https://doi.org/10.3390/w12041212