The Evolution and Sources of Major Ions in Hot Springs in the Triassic Carbonates of Chongqing, China
Abstract
:1. Introduction
2. Description of the Study Area
3. Material and Methods
3.1. Sampling and Testing
3.2. Methods
3.2.1. Cluster Analysis (CA)
3.2.2. Factor Analysis (FA)
3.2.3. Geochemical Modelling (GM)
4. Results and Discussion
4.1. General Hydrochemical Characteristics
4.2. Multivariate Statistical Analysis
4.2.1. Hierarchical Cluster Analysis (HCA)
4.2.2. Factor Analysis
4.3. Geochemical Modelling
4.3.1. Saturation Index
4.3.2. Reverse Modelling of Hydrochemical Pathways
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, X.; Cao, Q.; Yin, F.; Guo, J.; Wang, X.; Zhang, Y.; Shen, Y. Characteristics of the brines and hot in the high and steep fold zone springs in the Triassic carbonates of the Eastern Sichuan Basin. Acta Geol. Sin. 2015, 89, 1908–1920. (In Chinese) [Google Scholar]
- Zhou, X.; Wang, X.; Han, J.; Cao, Q.; Jiang, C.; Guo, J.; Zhou, H. Evolution of the Subsurface K-Rich Brines in the Triassic Carbonates in the Sichuan Basin of China. Groundwater 2017, 56, 832–843. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, X.; Wang, L.; Zhang, Y.; Shen, X.; Zhou, H.; Ye, S.; Fang, B. Hydrogeochemical characteristics and sources of salinity of the springs near Wenquanzhen in the eastern Sichuan Basin, China. Hydrogeol. J. 2017, 26, 1–15. [Google Scholar] [CrossRef]
- Ta, M.; Zhou, X.; Guo, J.; Wang, X.; Wang, Y.; Xu, Z. Occurrence and formation of the hot springs and thermal groundwater in Chongqing. Hydrogeol. Eng. Geol. 2018, 45, 165–172. (In Chinese) [Google Scholar]
- Yang, P.; Cheng, Q.; Xie, S.; Wang, J.; Chang, L.; Yu, Q.; Zhan, Z.; Chen, F. Hydrogeochemistry and geothermometry of deep thermal water in the carbonate formation in the main urban area of Chongqing, China. J. Hydrol. 2017, 549, 50–61. [Google Scholar] [CrossRef]
- Xiao, Q.; Shen, L.; Yang, L.; Wu, K.; Wang, P. Environmental significance of carbon and sulfur isotopes of the North hot spring in Chongqing. Hydrogeol. Eng. Geol. 2013, 40, 127–133. (In Chinese) [Google Scholar]
- Bishop, P.K. Chemical and isotopic evidence for hydrogeochemical processes occurring in the Lincolnshire Limestone. J. Hydrol. 1990, 121, 293–320. [Google Scholar] [CrossRef]
- Capecchiacci, F.; Tassi, F.; Vaselli, O.; Bicocchi, G.; Cabassi, J.; Giannini, L.; Nisi, B.; Chiocciora, G. A combined geochemical and isotopic study of the fluids discharged from the Montecatini thermal system (NW Tuscany, Italy). Appl. Geochem. 2015, 59, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, J.K.; Palmer, M.R.; Bullen, T.D.; Arnorsson, S.; Ragnarsdottir, K.V. The boron isotope systematics of Icelandic geothermal waters: 1. Meteoric water charged systems. Geochim. Cosmochim. Acta 2000, 64, 579–585. [Google Scholar] [CrossRef]
- Larsen, D.; Swihart, G.H.; Xiao, Y. Hydrochemistry and isotope composition of springs in the Tecopa basin, southeastern California, USA. Chem. Geol. 2001, 179, 17–35. [Google Scholar] [CrossRef]
- Boschetti, T.; Venturelli, G.; Toscani, L.; Barbieri, M.; Mucchino, C. The Bagni di Lucca thermal waters (Tuscany, Italy): An example of Ca-SO4 waters with high Na/Cl and low Ca/SO4 ratios. J. Hydrol. 2005, 307, 270–293. [Google Scholar] [CrossRef]
- Pasvanoğlu, S. Hydrogeochemical and isotopic investigation of the Bursa-Oylat thermal waters, Turkey. Environ. Earth Sci. 2011, 64, 1157–1167. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Gibson, C.E. Mechanisms controlling the water chemistry of small lakes in Northern Ireland. Water Res. 1996, 30, 178–182. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, X.W.; Wan, L.; Han, G.; Guo, H. Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin. J. Hydrol. 2015, 527, 433–441. [Google Scholar] [CrossRef]
- Bouzourra, H.; Bouhlila, R.; Elango, L.; Slama, F.; Ouslati, N. Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations. Environ. Sci. Pollut. Res. 2015, 22, 2643–2660. [Google Scholar] [CrossRef]
- Cloutier, V.; Lefebvre, R.; Therrien, R.; Savard, M.M. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J. Hydrol. 2008, 353, 294–313. [Google Scholar] [CrossRef]
- Güler, C.; Thyne, G.D.; Mccray, J.E.; Turner, K.A. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J. 2002, 10, 455–474. [Google Scholar] [CrossRef]
- Ghesquière, O.; Walter, J.; Chesnaux, R.; Rouleau, A. Scenarios of groundwater chemical evolution in a region of the Canadian Shield based on multivariate statistical analysis. J. Hydrol. Reg. Stud. 2015, 4, 246–266. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Guo, Q.; Liu, M.; Luo, J.; Yin, Z.; Zhang, C.; Zhu, M.; Guo, W.; Li, J.; Zhou, C. Hydrogeochemical processes occurring in the hydrothermal systems of the Gonghe-Guide basin, northwestern China: Critical insights from a principal components analysis (PCA). Environ. Earth Sci. 2016, 75, 1187. [Google Scholar] [CrossRef]
- Jia, Z.; Zang, H.; Hobbs, P.; Zheng, X.; Xu, Y.; Wang, K. Application of inverse modeling in a study of the hydrogeochemical evolution of karst groundwater in the Jinci Spring region, northern China. Environ. Earth Sci. 2017, 76, 312. [Google Scholar] [CrossRef]
- Liu, C.W.; Wang, C.J.; Kao, Y.H. Assessing and simulating the major pathway and hydrogeochemical transport of arsenic in the Beitou–Guandu area, Taiwan. Environ. Geochem. Health 2016, 38, 219. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.Y.; Peng, T.R.; Liou, T.S. Identification of the origin of salinization in groundwater using multivariate statistical analysis and geochemical modeling: A case study of Kaohsiung, Southwest Taiwan. Environ. Geol. 2008, 55, 39–352. [Google Scholar] [CrossRef]
- Grasby, S.E.; Hutcheon, I.; Krouse, H.R. The influence of water-rock interaction on the chemistry of thermal springs in western Canada. Appl. Geochem. 2000, 15, 439–454. [Google Scholar] [CrossRef]
- Güler, C.; Thyne, G.D. Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA. J. Hydrol. 2004, 285, 177–198. [Google Scholar] [CrossRef]
- Raju, N.J.; Patel, P.; Reddy, B.C.S.R.; Suresh, U.; Reddy, T.V.K. Identifying source and evaluation of hydrogeochemical processes in the hard rock aquifer system: Geostatistical analysis and geochemical modeling techniques. Environ. Earth Sci. 2016, 75, 1157. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, X.; Wang, S.; Wei, J. Geologic-tectonic evolutional characteristics and prospecting potential for ISL-amenable sandstone-type uranium deposits in Sichuan basin. Uranium Geol. 2005, 21, 321–330. (In Chinese) [Google Scholar]
- Cui, X. The Genetic Model of Hot Spring in Western Sichuan Basin China. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2014. (In Chinese). [Google Scholar]
- Luo, X. Formation and characteristics of the geothermal spring in Tongjing scenic spot, North Chongqing district, Chongqing city. Carsologica Sin. 2000, 19, 159–163. (In Chinese) [Google Scholar]
- Yu, Q. Study on the Reservoir Temperature and Scaling of Borehole Geothermal Water of Carbonate Rocks in Chongqing. Master’s Thesis, Southwest University, Chongqing, China, 2017. [Google Scholar]
- Singh, K.P.; Amrita, M.; Dinesh, M.; Sarita, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef]
- Helstrup, T.; Jørgensen, N.O.; Banoeng-Yakubo, B. Investigation of hydrochemical characteristics of groundwater from the Cretaceous-Eocene limestone aquifer in southern Ghana and southern Togo using hierarchical cluster analysis. Hydrogeol. J. 2007, 15, 977–989. [Google Scholar] [CrossRef]
- Obeidat, M.M.; Awawdeh, M.; Al-Rub, F.A. Multivariate statistical analysis and environmental isotopes of Amman/Wadi Sir (B2/A7) groundwater, Yarmouk River Basin, Jordan. Hydrol. Process. 2013, 27, 2449–2461. [Google Scholar] [CrossRef]
- Belkhiri, L.; Boudoukha, A.; Mouni, L.; Baouz, T. Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—A case study: Ain Azel plain (Algeria). Geoderma 2010, 159, 390–398. [Google Scholar] [CrossRef]
- Oueslati, O.; De Girolamo, A.M.; Abouabdillah, A.; Kjeldsen, T.R.; Lo Porto, A. Classifying the flow regimes of Mediterranean streams using multivariate analysis. Hydrol. Process. 2015, 29, 4666–4682. [Google Scholar] [CrossRef]
- Lindsey, C.R.; Neupane, G.; Spycher, N.; Fairley, J.P.; Dobson, P.; Wood, T.; Mcling, T.; Conrad, M. Cluster analysis as a tool for evaluating the exploration potential of Known Geothermal Resource Areas. Geothermics 2018, 72, 358–370. [Google Scholar] [CrossRef]
- Daughney, C.J.; Raiber, M.; Moreau-Fournier, M.; Morgenstern, U.; van der Raaij, R. Use of hierarchical cluster analysis to assess the representativeness of a baseline groundwater quality monitoring network: Comparison of New Zealand’s national and regional groundwater monitoring programs. Hydrogeol. J. 2012, 20, 185–200. [Google Scholar] [CrossRef]
- Rissmann, C.; Leybourne, M.; Benn, C.; Christenson, B. The origin of solutes within the groundwaters of a high Andean aquifer. Chem. Geol. 2015, 396, 164–181. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. Publ. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, R.H.; Lee, J.; Cheong, T.J.; Yum, B.W.; Chang, H.W. Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea. Hydrol. Process. 2005, 19, 1261–1276. [Google Scholar] [CrossRef]
- Suk, H.; Lee, K.K. Characterization of a ground water hydrochemical system through multivariate analysis: Clustering into ground water zones. Groundwater 2010, 37, 358–366. [Google Scholar] [CrossRef]
- Yidana, S.M. Groundwater classification using multivariate statistical methods: Southern Ghana. J. Afr. Earth Sci. 2010, 57, 455–469. [Google Scholar] [CrossRef]
- Alberto, W.D.; Del Pilar, D.M.; Valeria, A.M.; Fabiana, P.S.; Cecilia, H.A.; Bm, D.L.A. Pattern Recognition Techniques for the Evaluation of Spatial and Temporal Variations in Water Quality. A Case Study: Suquía River Basin (Córdoba–Argentina). Water Res. 2001, 35, 2881–2894. [Google Scholar] [CrossRef]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Dassi, L. Investigation by multivariate analysis of groundwater composition in a multilayer aquifer system from North Africa: A multi-tracer approach. Appl. Geochem. 2011, 26, 1386–1398. [Google Scholar] [CrossRef]
- Sundaray, S.K.; Panda, U.C.; Nayak, B.B.; Bhatta, D. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of the Mahanadi river–estuarine system (India)—A case study. Environ. Geochem. Health 2006, 28, 317–330. [Google Scholar] [CrossRef]
- Mondal, N.C.; Singh, V.P.; Singh, V.S.; Saxena, V.K. Determining the interaction between groundwater and saline water through groundwater major ions chemistry. J. Hydrol. 2010, 388, 100–111. [Google Scholar] [CrossRef]
- Rodríguez, M.; Sfer, A.; Sales, A. Application of chemometrics to hydrochemical parameters and hydrogeochemical modeling of Calera River basin in the Northwest of Argentina. Environ. Earth Sci. 2016, 75, 1–12. [Google Scholar] [CrossRef]
- Bozau, E.; Häußler, S.; Berk, W.V. Hydrogeochemical modelling of corrosion effects and barite scaling in deep geothermal wells of the North German Basin using PHREEQC and PHAST. Geothermics 2015, 53, 540–547. [Google Scholar] [CrossRef]
- Han, Y.; Wang, G.; Iii, C.A.C.; Hu, W.; Bian, Y.; Zhang, Z.; Liu, Y. Hydrogeochemical evolution of Ordovician limestone groundwater in Yanzhou, North China. Hydrol. Process. 2013, 27, 2247–2257. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to PHREEQC (Version 2)—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Water-Resour. Investig. Rep. 1999, 99, 312. [Google Scholar]
- Pavlovskiy, I.; Selle, B. Integrating hydrogeochemical, hydrogeological, and environmental tracer data to understand groundwater flow for a karstified aquifer system. Groundwater 2015, 53, 156–165. [Google Scholar] [CrossRef]
- Xiao, Q.; Jiang, Y.; Shen, L.; Yuan, D. Origin of calcium sulfate-type water in the Triassic carbonate thermal water system in Chongqing, China: A chemical and isotopic reconnaissance. Appl. Geochem. 2018, 89, 49–58. [Google Scholar] [CrossRef]
- Wang, P.; Yu, J.; Zhang, Y.; Liu, C. Groundwater recharge and hydrogeochemical evolution in the Ejina Basin, northwest China. J. Hydrol. 2013, 476, 72–86. [Google Scholar] [CrossRef]
- He, J.; Ma, J.; Zhang, P.; Tian, L.; Zhu, G.; Edmunds, W.M.; Zhang, Q. Groundwater recharge environments and hydrogeochemical evolution in the Jiuquan Basin, Northwest China. Appl. Geochem. 2012, 27, 866–878. [Google Scholar] [CrossRef]
- Guo, P.; Wang, Y.; Wang, Y.; Wang, R.; Hu, B.; Tang, X. Preliminary study of the chemical properties of broad-leaved forest under acid deposition in Jinyun mountain. J. Soil Water Conserv. 2012, 26, 235–238. (In Chinese) [Google Scholar]
Parameter | Cluster | |||||
---|---|---|---|---|---|---|
A | B | C | ||||
Mean | SD | Mean | SD | Mean | SD | |
T | 45.7 | 6.0 | 44.0 | 6.4 | 44.5 | 10.6 |
pH | 7.3 | 0.5 | 7.2 | 0.5 | 7.6 | 0.1 |
K+ | 22.3 | 6.1 | 20.3 | 8.6 | 6.6 | 3.1 |
Na+ | 20.5 | 8.0 | 37.0 | 11.6 | 17.1 | 15.2 |
Ca2+ | 627.4 | 20.9 | 546.4 | 60.6 | 368.8 | 14.8 |
Mg2+ | 112.6 | 12.6 | 105.1 | 14.9 | 66.1 | 7.8 |
Cl− | 11.3 | 8.7 | 36.0 | 17.2 | 11.2 | 12.0 |
SO42− | 1841.6 | 81.5 | 1645.3 | 167.8 | 1024.0 | 26.8 |
HCO3− | 163.6 | 12.7 | 167.6 | 24.5 | 221.6 | 2.9 |
SiO2 | 27.4 | 6.4 | 27.1 | 9.3 | 25.4 | 3.5 |
TDS | 2789.3 | 96.0 | 2559.4 | 244.3 | 1665.0 | 63.6 |
Parameters | T | pH | K+ | Na+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | SiO2 | TDS |
---|---|---|---|---|---|---|---|---|---|---|---|
T | 1.00 | ||||||||||
pH | 0.18 | 1.00 | |||||||||
K+ | 0.02 | 0.07 | 1.00 | ||||||||
Na+ | 0.29 | −0.16 | 0.05 | 1.00 | |||||||
Ca2+ | 0.16 | −0.13 | 0.41 * | −0.04 | 1.00 | ||||||
Mg2+ | 0.05 | −0.24 | 0.15 | 0.22 | 0.75 ** | 1.00 | |||||
Cl− | −0.20 | −0.24 | −0.08 | 0.70 ** | −0.12 | 0.19 | 1.00 | ||||
SO42− | 0.12 | −0.19 | 0.38 * | 0.07 | 0.96 ** | 0.84 ** | −0.03 | 1.00 | |||
HCO3− | 0.18 | 0.24 | −0.48 ** | −0.03 | −0.46 * | −0.49 ** | −0.35 | −0.51 ** | 1.00 | ||
SiO2 | 0.50 ** | 0.09 | 0.03 | 0.14 | 0.18 | 0.18 | −0.33 | 0.17 | 0.45 * | 1.00 | |
TDS | 0.13 | −0.19 | 0.40 * | 0.15 | 0.95 ** | 0.86 ** | 0.04 | 0.99 ** | −0.51 ** | 0.19 | 1.00 |
Factor | Initial Eigenvalues | Rotation Sums of Squared Loadings | ||||
---|---|---|---|---|---|---|
Eigenvalue | Variance % | Cumulative % | Eigenvalue | Variance % | Cumulative % | |
1 | 4.30 | 39.12 | 39.12 | 4.20 | 38.20 | 38.20 |
2 | 2.14 | 19.50 | 58.62 | 1.99 | 18.10 | 56.31 |
3 | 1.70 | 15.45 | 74.07 | 1.84 | 16.76 | 73.06 |
4 | 1.08 | 9.80 | 83.86 | 1.19 | 10.80 | 83.86 |
5 | 0.72 | 6.52 | 90.38 | |||
6 | 0.56 | 5.06 | 95.45 | |||
7 | 0.27 | 2.48 | 97.93 | |||
8 | 0.14 | 1.29 | 99.22 | |||
9 | 0.06 | 0.55 | 99.77 | |||
10 | 0.02 | 0.22 | 99.99 | |||
11 | 0.00 | 0.01 | 100.00 |
Parameter | Factors | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
T | 0.08 | 0.78 | 0.15 | 0.22 |
pH | −0.31 | 0.27 | −0.21 | 0.62 |
K+ | 0.38 | −0.13 | 0.03 | 0.76 |
Na+ | 0.06 | 0.27 | 0.93 | −0.01 |
Ca2+ | 0.95 | 0.08 | −0.12 | 0.13 |
Mg2+ | 0.88 | 0.04 | 0.19 | −0.15 |
Cl− | 0.00 | −0.33 | 0.89 | −0.12 |
SO42− | 0.98 | 0.05 | −0.02 | 0.07 |
HCO3− | −0.57 | 0.60 | −0.24 | −0.31 |
SiO2 | 0.17 | 0.86 | −0.10 | −0.08 |
TDS | 0.98 | 0.07 | 0.06 | 0.08 |
Phases | Formula | Model 1 | Model 2 | Model 3 |
---|---|---|---|---|
RW-Cluster A | RW-Cluster B | RW-Cluster C | ||
Albite | NaAlSi3O8 | 0.5746 | 0.5955 | 0.4286 |
Calcite | CaCO3 | −8.519 | −7.85 | −3.927 |
Chalcedony | SiO2 | −1.836 | −1.78 | −0.7719 |
CO2(g) | CO2 | 2.059 | 2.151 | 2.159 |
Dolomite | CaMg(CO3)2 | 4.645 | 4.335 | 2.724 |
Gypsum | CaSO4·2H2O | 19.57 | 17.18 | 10.42 |
Halite | NaCl | 0.3196 | 1.018 | 0.3165 |
K-feldspar | KAlSi3O8 | 0.5719 | 0.5205 | 0.1691 |
Kaolinite | Al2Si2O5(OH)4 | −0.5733 | −0.558 | −0.2989 |
H2O | H2O | 55470 | 55480 | 55490 |
Possible Phases | Dissolution |
---|---|
Albite | NaAlSi3O8 + 8H2O → Na+ + Al(OH)4− + 3H4SiO40 |
2NaAlSi3O8 + 2CO2 + 11H2O → 2Na+ + 2HCO3− + 4H4SiO40 + Al2Si2O5(OH)4 | |
Calcite | CaCO3 + H+ → Ca2+ + HCO3− |
Chalcedony | SiO2 + 2H2O → H4SiO40 |
CO2(g) | CO2 + H2O → H2CO3 |
Dolomite | CaMg(CO3)2 + 2H+ → Ca2+ + Mg2+ +2HCO3− |
CaMg(CO3)2 + H2CO3 → CaCO3 + Mg2+ + 2HCO3− | |
Gypsum | CaSO4:2H2O → Ca2+ +SO42− + 2H2O |
Halite | NaCl → Na+ + Cl− |
K-feldspar | KAlSi3O8 + 8H2O → K+ + Al(OH)4− +3H4SiO40 |
2KAlSi3O8 + 2CO2 + 11H2O → 2K+ + 2HCO3− + 4H4SiO40 + Al2Si2O5(OH)4 | |
Kaolinite | Al2Si2O5(OH)4 + 6H+ → H2O + 2H4SiO40 + 2Al3+ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ta, M.; Zhou, X.; Guo, J.; Wang, X.; Wang, Y.; Xu, Y. The Evolution and Sources of Major Ions in Hot Springs in the Triassic Carbonates of Chongqing, China. Water 2020, 12, 1194. https://doi.org/10.3390/w12041194
Ta M, Zhou X, Guo J, Wang X, Wang Y, Xu Y. The Evolution and Sources of Major Ions in Hot Springs in the Triassic Carbonates of Chongqing, China. Water. 2020; 12(4):1194. https://doi.org/10.3390/w12041194
Chicago/Turabian StyleTa, Mingming, Xun Zhou, Juan Guo, Xinyun Wang, Yuan Wang, and Yanqiu Xu. 2020. "The Evolution and Sources of Major Ions in Hot Springs in the Triassic Carbonates of Chongqing, China" Water 12, no. 4: 1194. https://doi.org/10.3390/w12041194
APA StyleTa, M., Zhou, X., Guo, J., Wang, X., Wang, Y., & Xu, Y. (2020). The Evolution and Sources of Major Ions in Hot Springs in the Triassic Carbonates of Chongqing, China. Water, 12(4), 1194. https://doi.org/10.3390/w12041194