Groundwater Circulation in Fractured and Karstic Aquifers of the Umbria-Marche Apennine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Recession Analysis
2.4. Time-Series Analysis
3. Results
3.1. Discharge Time Series Description
3.2. MRCs Analysis
3.3. Time-Series Analysis: Autocorrelation and Cross-Correlation
3.3.1. Autocorrelation Function (ACF)
3.3.2. Cross-Correlation Function (CCF)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Király, L. Modeling karst aquifers by the combined discrete channel and continuum approach. Bull. d’Hydrogéol. l’Univ. Neuchâtel. 1998, 16, 77–98. [Google Scholar]
- Kiraly, L. Karstification and Groundwater Flow. In Evolution of Karst: From Prekarst to Cessation; Zalozba ZRC: Postojna, Ljubljana, 2002; pp. 155–190. [Google Scholar]
- Kiraly, L.; Morel, G. Remarques sur l’hydrogramme des sources karstiques simulé par modéles mathe’matiques. Bull. Cent. d’Hydrogéol. Univ. Neuchatel. (Suisse) 1976, 1, 37–60. [Google Scholar]
- Kovács, A.; Perrochet, P. A quantitative approach to spring hydrograph decomposition. J. Hydrol. 2008, 352, 16–29. [Google Scholar] [CrossRef]
- Bonacci, O. Karst springs hydrographs as indicators of karst aquifers. Hydrol. Sci. J. 1993, 38, 51–62. [Google Scholar] [CrossRef]
- Brodie, R.S.; Hostetler, S. A review of techniques for analysing base flow from stream hydrographs. In Proceedings of the NZHS-IAH-NZSSS 2005 Conference, Aukland, New Zeland, 28 November–2 December 2005. [Google Scholar]
- Kresic, N.; Bonacci, O. Spring discharge hydrograph. In Groundwater Hydrology of Springs: Engineering, Theory, Management, and Sustainability, 1st ed.; Kresic, N., Stevanovic, Z., Eds.; Elsevier: Burlington, VT, USA, 2010; Volume 4, pp. 129–163. [Google Scholar] [CrossRef]
- Boussinesq, J. Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants à l’Académie des Sciences. XXIII 1877, 1, 1–680. [Google Scholar]
- Maillet, E. Essais d’Hydraulique souterraine et fluviale, Librairie Scientifique; Primary Source Edition; A. Hermann: Paris, French, 1905; p. vi-218. [Google Scholar]
- Mangin, A. Contribution a l’etude hydrodynamique des aquifères karstiques. Ann. Speleol. 1975, 26, 283–339. [Google Scholar]
- Amit, H.; Lyakhovsky, V.; Katz, A.; Starinsky, A.; Burg, A. Interpretation of spring recession curves. Groundwater 2002, 40, 543–551. [Google Scholar] [CrossRef]
- Kovács, A.; Perrochet, P.; Király, L.; Jeannin, P.Y. A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis. J. Hydrol. 2005, 303, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Fiorillo, F. The recession of spring hydrographs focused on karst aquifers. Water Resour. Manag. 2014, 28, 1781–1805. [Google Scholar] [CrossRef]
- Drogue, C. Analyse statistique des hydrogrammes de décrues des sources karstiques. J. Hydrol. 1972, 15, 49–68. [Google Scholar] [CrossRef]
- Malík, P. Assessment of regional karstification degree and groundwater sensitivity to pollution using hydrograph analysis in the Velka Fatra Mts., Slovakia. Environ. Geol. 2007, 51, 707–711. [Google Scholar] [CrossRef]
- Giacopetti, M.; Materazzi, M.; Pambianchi, G.; Posevac, K. Analysis of mountain springs discharge time series in the Tennecola stream catchment (central Apennine, Italy). Environ. Earth Sci. 2017, 2017, 20. [Google Scholar] [CrossRef]
- Nathan, R.J.; McMahon, T.A. Evaluation of automated techniques for base flow and recession analyses. Water Resour Res. 1990, 26, 1465–1473. [Google Scholar] [CrossRef]
- Tallaksen, L. A review of baseflow recession analysis. J. Hydrol. 1995, 165, 349–370. [Google Scholar] [CrossRef]
- Posavec, K.; Bačani, A.; Nakić, Z. A visual basic spreadsheet macro for recession curve analysis. Groundwater 2006, 44, 764–767. [Google Scholar] [CrossRef]
- Posavec, K.; Parlov, J.; Nakić, Z. Fully automated objective-based method for master recession curve separation. Groundwater 2010, 48, 598–603. [Google Scholar] [CrossRef]
- Gregor, M.; Malík, P. Construction of master recession curve using genetic algorithms. J. Hydrol. Hydromech. 2012, 60, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Fiorotto, V.; Caroni, E. A new approach to master recession curve analysis. Hydrol. Sci. J. 2013, 58, 966–975. [Google Scholar] [CrossRef] [Green Version]
- Malík, P.; Vojtková, S. Use of recession-curve analysis for estimation of karstification degree and its application in assessing overflow/underflow conditions in closely spaced karstic springs. Environ. Earth Sci. 2012, 65, 2245–2257. [Google Scholar] [CrossRef]
- Malík, P. Evaluating discharge regimes of karst aquifer. In Karst Aquifers-Characterization and Engineering; Stevanovic, Z., Ed.; Springer: Berlin, Germany, 2015; pp. 205–247. [Google Scholar] [CrossRef]
- Box, G.P.E.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1970. [Google Scholar]
- Mangin, A. Pour une meilleure connaissance des systmes hydrologiques h partir des analyses corrflatoire et spectrale. J. Hydrol. 1984, 67, 25–43. [Google Scholar] [CrossRef]
- Padilla, A.; Pulido-Bosch, A. Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J. Hydrol. 1995, 168, 73–89. [Google Scholar] [CrossRef]
- Larocque, M.; Mangin, A.; Razck, M.; Banton, O. Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). J. Hydrol. 1998, 205, 217–231. [Google Scholar] [CrossRef]
- Panagopoulos, G.; Lambrakis, N. The contribution of time series analysis to the study of the hydrodynamic characteristics of the karst systems: Application on two typical karst aquifers of Greece (Trifilia, Almyros Crete). J. Hydrol. 2006, 329, 368–376. [Google Scholar] [CrossRef]
- Jemcov, I.; Petrič, M. Measured precipitation vs. effective infiltration and their influence on the assessment of karst systems based on results of the time series analysis. J. Hydrol. 2009, 379, 304–314. [Google Scholar] [CrossRef]
- Kresic, N.; Stevanovic, Z. Groundwater Hydrology of Springs: Engineering, Theory, Management and Sustainability, 1st ed.; Butterworth-Heinemann: Burlington, NJ, USA, 2010. [Google Scholar]
- Centamore, E.; Deiana, G. La Geologia delle Marche. Studi Geol. Camerti 1986, Special Volume, 1–145. [Google Scholar]
- Ciarapica, G.; Passeri, L. The paleographic duplicity of the Apennines. Boll. Soc. Geol. Ital. 2002, 121, 67–75. [Google Scholar]
- Menichetti, M.; De Feyter, A.J.; Corsi, M. Crop 03dIl tratto della Val Tiberina-Mare Adriatico. Sezione geologica e caratterizzazione tettonico-sedimentaria delle avanfosse della zona umbro-marchigiano-romagnola. Studi Geol. Camerti. 1991, 1, 279–293. [Google Scholar]
- Barchi, M.; De Feyter, A.; Magnani, M.B.; Minelli, G.; Pialli, G.; Sotera, B.M. The structural style of the Umbria-Marche fold and thrust belt. Soc. Geol. Ital. Mem. 1998, 52, 557–578. [Google Scholar]
- Boni, C.; Bono, P.; Capelli, G. Schema idrogeologico dell’Italia Centrale. Mem. Soc. Geol. Ital. 1986, 35, 991–1012. [Google Scholar]
- Capaccioni, B.; Didero, M.; Paletta, C.; Salvadori, P. Hydrogeochemistry of groundwaters from carbonate formations with basal gypsiferous layers: An example from Mt Catria-Mt Nerone ridge (Northern Apennines, Italy). J. Hydrol. 2001, 253, 14–26. [Google Scholar] [CrossRef]
- Nanni, T.; Vivalda, P. The aquifers of the Umbria-Marche Adriatic region: Relationship between structural setting and groundwater chemistry. Boll. Soc. Geol. Ital. 2005, 124, 523–542. [Google Scholar]
- Boni, C.; Petitta, M. Studio Idrogeologico per L’identificazione e la Caratterizzazione Degli Acquiferi che Alimentano le Sorgenti dei Corsi D’acqua Perenni dei Monti Sibillini, Esteso All’intera Area del Parco Nazionale; Rapporto definitivo; Contratto di studio e ricerca. Autorità di Bacino del Fiume Tevere—Parco Nazionale dei Monti Sibillini—Dipartimento Scienze della Terra Università di Roma “La Sapienza”; Università “La Sapienza”di Roma: Roma, Italy, 2007. [Google Scholar]
- Boni, C.; Petitta, M. Redazione informatizzata della cartografia idrogeologica tematica del territorio della Regione Umbria. Tech. Note 2008, 2008, 131. [Google Scholar]
- Boni, C.; Baldoni, T.; Banzato, F.; Cascone, D.; Petitta, M. Hydrogeological study for identification, characterisation and management of groundwater resources in the Sibillini Mountains National Park (central Italy). Ital. J. Eng. Geol. Environ. 2010, 2, 21–39. [Google Scholar] [CrossRef]
- Mastrorillo, L. Elementi strutturali e caratteristiche idrogeologiche della dorsale carbonatica umbro-marchigiana. Mem. Soc. Geol. Ital. 2001, 56, 219–226. [Google Scholar]
- Mastrorillo, L.; Baldoni, T.; Banzato, F.; Boscherini, A.; Cascone, D.; Checcucci, R.; Petitta, M.; Boni, C. Quantitative hydrogeological analysis of the carbonate domain in the Umbria region. Ital. Eng. Geol. Environ. 2009, 1, 137–155. [Google Scholar]
- Menichetti, M.; Salvatori, F.; Reichembach, G. Contribution des essais de multitracages à la definition de l’hydrostructure carbonatique de Monte Cucco et de la source Scirca-Italie-Apennin Central. Ann. Sci. l’Univ. Besancon Geol. Mem. Hors Ser. 1988, 6, 347–364. [Google Scholar]
- Boni, C.; Mastrorillo, L.; Preziosi, E. Simulazione numerica di acquiferi carbonatici: L’esempio della struttura Monte Maggio–Monte Penna (Nocera Umbra). Geol. Romana 1994, 30, 27–35. [Google Scholar]
- Dragoni, W.; Mottola, A.; Cambi, C. Modeling the effects of pumping wells in spring management: The case of Scirca spring (central Apennines, Italy). J. Hydrol. 2013, 493, 115–123. [Google Scholar] [CrossRef]
- Cambi, C.; Di Matteo, L.; Dragoni, W.; Valigi, D.; Frondini, F.; Boscherini, A.; Checcucci, R. Hydrogeological map of Gualdo Mountains North-Eastern Umbria. Explanatory Notes. Water budget of Jurassic and low Cretacicous hydrogeological complexes. Umbria Reg. Proj. Piano Ambient. 2006. [Google Scholar] [CrossRef]
- Ardizzone, F.; Dragoni, W.; Marchetti, G.; Mariani, M.; Vacca, G. Definizione delle aree di salvaguardia della sorgente di Bagnara di Nocera Umbra. In Proceedings of the 3° Convegno Nazionale Sulla Protezione e Gestione Delle Acque Sotterranee Per il III Millennio, Parma, Italy, 13–15 October 1999; p. 3. [Google Scholar]
- Dewandel, B.; Lachassagne, P.; Bakalowicz, M.; Weng, P.; Al-Malki, A. Evaluation of aquifer thickness by analysing recession hydrographs. Application to the Oman ophiolite hard-rock aquifer. J. Hydrol. 2003, 274, 248–269. [Google Scholar] [CrossRef]
- Eisenlohr, L.; Király, L.; Bouzelboudjen, M.; Rossier, Y. Numerical versus statistical modelling of natural response of a karst hydrogeological system. J. Hydrol. 1997, 202, 244–262. [Google Scholar] [CrossRef]
- Forkasiewicz, J.; Paloc, H. Le régime de tarissement de la Foux de la Vis. Etude preliminaire. Chron. d’Hydrogeol. 1967, 3, 61–73. [Google Scholar]
- Ghasemizadeh, R.; Hellweger, F.; Butscher, C.; Padilla, I.; Vesper, D.; Field, M.; Alshawabkeh, A. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico. Hydrogeol. J. 2012, 20, 1441–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, W.B. Conceptual models for karstic aquifers. Speleogenes. Evol. Karst Aquifers 2003, 1, 1–6. [Google Scholar]
- Katsanou, K.; Lambrakis, N.; Tayfur, G.; Baba, A. Describing the karst evolution by the exploitation of hydrologic time-series data. Water Resour. Manag. 2015, 29, 3131–3147. [Google Scholar] [CrossRef] [Green Version]
- Mayaud, C.; Wagner, T.; Benischke, R.; Birk, S. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria). J. Hydrol. 2014, 511, 628–639. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control, 3rd ed.; Prentice Hall Inc.: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Mangin, A. Utilisation des analyses correlatoire et spectrale dans l’approche des systemes hydrologiques. Comptes Rendusd Acad. Sci. 1981, 293, 401–404. [Google Scholar]
- Mangin, A.; Pulido-Bosch, A. Aplicacion de los analisis de correlatorie spectral en el estudio de los acuiferos karsticos. Tecniterrae 1983, 51, 53–65. [Google Scholar]
- Lo Russo, S.; Amanzio, G.; Ghione, R.; De Maio, M. Recession hydrographs and time series analysis of springs monitoring data: Application on porous and shallow aquifers in mountain areas (Aosta Valley). Environ. Earth Sci. 2015, 73, 7415–7434. [Google Scholar] [CrossRef]
- Fiorillo, F.; Doglioni, A. The relation between karst spring discharge and rainfall by cross-correlation analysis (Campania, Southern Italy). Hydrogeol. J. 2010, 18, 1881–1895. [Google Scholar] [CrossRef]
- Delbart, C.; Valdés, D.; Barbecot, F.; Tognelli, A.; Chouchoux, L. Spatial organization of the impulse response in a karst aquifer. J. Hydrol. 2016, 537, 18–26. [Google Scholar] [CrossRef]
- Fiorillo, F.; Malik, P. Hydraulic behavior of Karst Aquifers. Water 2019, 11, 1563. [Google Scholar] [CrossRef] [Green Version]
- Riggs, H.C. The base-flow recession curve as an indicator of groundwater. Int. Assoc. Sci. Hydrol. Publ. 1964, 63, 352–363. [Google Scholar]
- Petras, I. An approach to the mathematical expression of recession curves. Water SA 1986, 12, 145–150. [Google Scholar]
- Fiorillo, F. Tank-reservoir drainage as a simulation of the recession limb of karst spring hydrographs. Hydrogeol. J. 2011, 19, 1009–1019. [Google Scholar] [CrossRef]
- Fiorillo, F.; Pagnozzi, M. Recharge processes of karst massifs: Example from southern Italy. Environ. Earth Sci. 2015, 1, 103–111. [Google Scholar]
- Mohammadi, Z.; Shoja, A. Effect of annual rainfall amount on characteristics of karst spring hydrograph. Carbonates Evaporites 2014, 29, 279–289. [Google Scholar] [CrossRef]
- Bailly-Comte, V.; Martin, J.B.; Jourde, H.; Screaton, E.J.; Pistre, S.; Langston, A. Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams. J. Hydrol. 2010, 386, 55–66. [Google Scholar] [CrossRef]
- Padilla, A.; Pulido-Bosch, A.; Mangin, A. Relative importance of baseflow and quickflow from hydrographs of karst spring. Groundwater 1994, 32, 267–277. [Google Scholar] [CrossRef]
- Fu, T.G.; Chen, H.S.; Wang, K.L. Structure and water storage capacity of a small karst aquifer based on stream discharge in southwest China. J. Hydrol. 2016, 534, 50–62. [Google Scholar] [CrossRef]
- Mastrorillo, L.; Petitta, M. Hydrogeological conceptual model of the Upper River basin aquifers (Umbria-Marche Apennines). Ital. J. Geosci. 2014, 133, 396–408. [Google Scholar] [CrossRef]
- Boni, C.; Mastrorillo, M.; Cascone, D.; Tarragoni, C. Carta Idrogeologica Delle Dorsali Interne Umbro-Marchigiane (Scala 1:50.000); GNDCI-CNR: Rome, Italy, 2005; Volume 2865. [Google Scholar]
- Centamore, E.; Micarelli, A. L’ambiente fisico delle Marche: Stratigrafia. Regione Marche, Assessorato Urbanistico; S.E.L.C.A.: Firenze, Italy, 1991. [Google Scholar]
- Chiaudani, A.; Di Curzio, D.; Rusi, S. The snow and rainfall impact on the Verde spring behavior: A statistical approach on hydrodynamic and hydrochemical daily time-series. Sci. Total Environ. 2019, 689, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Pulido-Bosch, A.; Padilla, A.; Dimitrov, D.; Machkova, M. The discharge variability of some karst springs in Bulgaria studied by time series analysis. Hydrol. Sci. J. 1995, 40, 517–532. [Google Scholar] [CrossRef]
- Cambi, C.; Valigi, D.; Di Matteo, L. Hydrogeological study of data-scarce limestone massifs: The case of Gualdo Tadino and Monte Cucco structures (central Apennines, Italy). Boll. Geofis. Teor. Appl. 2010, 51, 345–360. [Google Scholar]
- Angelini, P.; Dragoni, W. The problem of modelling limestone spring: The case of Bagnara (North Apennines, Italy). Groundwater 1997, 35, 612–618. [Google Scholar] [CrossRef]
- Fiorillo, F.; Revellino, P.; Ventafridda, G. Karst aquifer draining during dry period. J. Cave Karst Stud. 2012, 74, 148–156. [Google Scholar] [CrossRef]
Hydro- Structures | Spring | Latitude | Longitude | Spring Altitude (m a.s.l.) | Recharge Area (km2) |
---|---|---|---|---|---|
Mt Cucco | Scirca | 323,040.1821 | 4,774,571.7434 | 575 | 8.0 |
Mt Maggio | Vaccara | 325,711.2678 | 4,774,969.1254 | 468 | 6.2 |
Mt Penna | Boschetto | 324,530.5164 | 4,782,340.2809 | 538 | 11.5 |
Mt Penna | Capo d’Acqua | 316,236.3956 | 4,802,705.2176 | 570 | 7.4 |
Mt Burella | San Giovenale | 301,037.8923 | 4,823,140.7066 | 480 | 10.5 |
Mt Pennino | Bagnara | 321,608.1134 | 4,783,863.2012 | 630 | 4.9 |
Rain Gauge Station | Gauge Station Code | Latitude | Longitude | Monitored Period | Station Altitude (m a.s.l.) |
---|---|---|---|---|---|
Mt Cucco | MT-13015 | 316,280.8388 | 4,805,532.5274 | 2007–2015 | 1116 |
Gualdo Tadino | GT-27422 | 321,232.2980 | 4,789,176.7740 | 2007–2015 | 563 |
Nocera Umbra | NU-12907 | 320,698.8825 | 4,775,721.4408 | 2007–2015 | 542 |
Spring | Monitored Period | No. of All Data | No. Miss Data | Time-Series Lag (%) |
---|---|---|---|---|
Scirca | 2007–2015 | 3186 | 107 | 3.4 |
Vaccara | 2007–2015 | 3097 | 754 | 24.3 |
Boschetto | 2007–2015 | 3194 | 246 | 7.7 |
Capo d’Acqua | 2007–2015 | 3232 | 55 | 1.7 |
San Giovenale | 2007–2015 | 2107 | 180 | 5.8 |
Bagnara | 2007–2015 | 3240 | 47 | 1.5 |
Spring | No. of Recession Segments | Qb1 (l/s) | αb (d−1) | tb (day) | Qq2 (l/s) | αq (d−1) | tq (day) |
---|---|---|---|---|---|---|---|
Scirca | 8 | 180 | 0.0060 | 225 | 220 | 0.025 | 150 |
Vaccara | 7 | 90 | 0.0053 | 200 | 220 | 0.080 | 60 |
Boschetto | 7 | 180 | 0.0065 | 200 | 650 | 0.100 | 50 |
Bagnara | 6 | 120 | 0.0085 | 300 | 180 | 0.015 | 200 |
Spring | No. of Recession Segments | Q (l/s) | α (d−1) | tr (day) |
---|---|---|---|---|
Capo d’acqua | 4 | 145 | 0.0074 | 200 |
San Giovenale | 6 | 380 | 0.0115 | 200 |
Aquifer Spring | Memory Effect (days) | Cross-Correlation Coef. | Time LagSS (days) |
---|---|---|---|
Scirca | 80 | 0.24 | 13 |
Vaccara | 90 | 0.18 | 2 |
Boschetto | 89 | 0.27 | 2 |
Capo d’Acqua | 90 | 0.18 | 74 |
San Giovenale | 150 | 0.18 | 119 |
Bagnara | 121 | 0.20 | 39 |
Spring | Characteristics of Recession Curve Parameters | Karstification Degree |
---|---|---|
Scirca | αb > 0.0043 αc < 0.060 | 3.7 |
Vaccara | αb = 0.0041 to 0.018 αc = 0.055 to 0.16 | 4.0 |
Boschetto | αb = 0.0041 to 0.018 αc = 0.055 to 0.16 | 4.0 |
Bagnara | αb > 0.0043 αc < 0.060 | 3.7 |
Capo d’Acqua | α > 0.007 | 2.3 |
San Giovenale | α > 0.007 | 2.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamburini, A.; Menichetti, M. Groundwater Circulation in Fractured and Karstic Aquifers of the Umbria-Marche Apennine. Water 2020, 12, 1039. https://doi.org/10.3390/w12041039
Tamburini A, Menichetti M. Groundwater Circulation in Fractured and Karstic Aquifers of the Umbria-Marche Apennine. Water. 2020; 12(4):1039. https://doi.org/10.3390/w12041039
Chicago/Turabian StyleTamburini, Andrea, and Marco Menichetti. 2020. "Groundwater Circulation in Fractured and Karstic Aquifers of the Umbria-Marche Apennine" Water 12, no. 4: 1039. https://doi.org/10.3390/w12041039
APA StyleTamburini, A., & Menichetti, M. (2020). Groundwater Circulation in Fractured and Karstic Aquifers of the Umbria-Marche Apennine. Water, 12(4), 1039. https://doi.org/10.3390/w12041039