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Abstract: The Umbria-Marche Apennine has a large number of springs that drain water stored
in carbonate formations. Spring groundwater constitutes a crucial freshwater resource for many
countries, regions, and cities around the world. This study aimed to understand the hydrological
mechanisms behind groundwater circulation and their relationship to the structural and stratigraphic
settings of specific aquifers. Recession analysis and time series analysis were applied to the daily
discharge of six springs monitored over eight years. Both analyses indicated the presence of two
types of aquifers: aquifer with unimodal behavior and aquifer with bimodal behavior. The first are
characterized by two hydrodynamic sub-regimes, in which fracture networks control the baseflow and
conduit networks control the quickflow. In contrast, other springs present only one hydrodynamic
sub-regime related to fracture network drainage. Time series analysis confirms the results of recession
analysis, showing a large memory effect and a large response time, implying the dominance of the
baseflow sub-regime. These results indicate that the Maiolica Formation is characterized by a high
degree of fracturation and slight karstification, which control infiltration and percolation, whereas
the Calcare Massiccio Formation regulates groundwater circulation in the deeper zones of the aquifer,
characterized by a high degree of karstification through moderately developed conduit networks.
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1. Introduction

To construct a distributive model of groundwater circulation in a carbonate aquifer, the definition
of realistic hydraulic and geometric parameters is essential [1–3]. Carbonate aquifers differ from
other types of hydrogeological systems in their complex behavior, stemming from strong spatial
heterogeneity and temporal variation [4]. This heterogeneity is linked to the hydraulic properties of
the through media, such as low-permeability of rock matrix or high permeability of conduit networks,
especially when karstified. However, in most cases, spring discharge time series data can be obtained
and used to perform an analysis of hydrograph recession curves, which are an often-used method in
the interpretation of the characteristics and flow attributes of an aquifer [5–7].

Some hydrograph analytical techniques are based on the analysis of slow hydrograph recession
segments using the Maillet and Boussinesq equations [8,9]. Therein, deviations from the calculated
exponential trends may indicate the presence of hydraulic anisotropies and, therefore, highlight the
close relationship between spring hydrographs and hydro-structural geometry [10–13].

Other authors proposed characterizing the recession process by employing different mathematical
functions. Drogue [14] described the whole recession process by using one single hyperbolic
formula, where the recession coefficient, α, is not equivalent to the coefficient used by Maillet [9].
In contrast, Mangin [10] distinguished two processes that influence recession curves: discharge from
the non-saturated zone with a non-linear flood recession and discharge from the saturated zone with a
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linear baseflow recession. Kovács et al. [12] showed that the recession coefficient allows for obtaining
important information about aquifer hydraulic parameters and conduit network characteristics.
One main advantage of recession curve analysis is that a set of empirical, quantitative parameters
attributed to drainage mechanisms can be calculated [15].

Analysis of individual recession periods sometimes generates inconsistences related to the
complexity of groundwater circulation and the processes acting on the system [16]. Therefore, a master
recession curve (MRC) is commonly used for simultaneously analyzing a set of hydrograph recessions
at a particular catchment [17–22].

Malík and Vojtková [23] performed a recession curve analysis to evaluate the karstification
degree and the hydrodynamic behavior of an aquifer. With given recession coefficients and initial
discharge values, both runoff and partial runoff segments (sub-regimes) can be fully described. In karst
hydrogeology, the term “sub-regime” refers to the changing conditions of a groundwater system,
its characteristic behavior, or the controlling of natural processes, which usually occur in a regular
pattern [24].

Apart from recession analysis, univariate and bivariate analyses can also be performed on spring
hydrographs. Valuable indirect information regarding karst systems can be obtained by performing a
time series analysis [25]. Mangin [26] developed a specific methodology for studying the input-output
relationships in karst aquifers, as well as for performing auto-correlation (univariate analysis) and
cross-correlation (bivariate analysis). This methodology was based on a systemic approach and was
applied and elaborated further by several authors [27–30]. In karst hydrogeology, auto-correlation
functions (ACF) of spring discharge (Q) are generally used to assess the interdependence of spring
discharge and evaluate the so-called “memory effect” [31], whereas the cross-correlation function
(CCF) is widely used to analyze the linear relationship between input (rainfall or snowmelt, P) and
output (Q).

A hydrogeological study of aquifer spring provides key information for the sustainable
management of water resources exploitable by different end-users (e.g., hydrogeologists, hydraulic
engineers, well drillers, environmental decision-makers).

The present work aims to characterize the behavior and groundwater circulation of the
Umbria-Marche carbonate aquifers (northern Apennines) on a regional scale. MRCs were constructed
and used (i) to define the mechanisms controlling flow path distribution within carbonate
hydro-structures, (ii) to discretize the possible sub-regimes, and (iii) to define the karstification
degree of each carbonate complex analyzed. The statistical methods applied to the time series gave
information about the characteristics of the carbonate systems under study. Particular emphasis was
given to the hydro-geological interpretation of the functions and their relationships with the structural
setting in this portion of the Apennine ridge.

2. Materials and Methods

2.1. Study Area

The Apenninic chain of Central Italy is a mountain range characterized by the presence of
extensive outcrops of thick Mesozoic limestone sequences. The study area includes a large sector
that starts at the M. Cucco anticline and terminates at the M. Pennino anticline. The outcropping
geological formations are mainly composed of calcareous and marly lithotypes (from Triassic to
Cretaceous in age) belonging to the Umbria-Marche Succession [32,33]. From a structural point of
view, the Umbria-Marche Apennines can be considered a typical thin-skinned thrust belt in which a
hierarchy of multiple, superimposed detachments occurred over a main, basal detachment at the level
of Triassic evaporites that act as an aquiclude. The Apenninic arch has a vergency towards ENE [34,35]
and is characterized by SW dipping thrust and by fault systems with a N-S and E-W strike.

The evaporitic level is overlaid by the Mesozoic carbonatic sequence consisting of three
superimposed aquifers of different permeabilities controlled mainly by fissures, joints, and karst
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conduits (see the hydrogeological map in Figure 1) [36–41]. Starting from the bottom, these aquifers
are the basal aquifer of the Massiccio Complex, the middle aquifer of Maiolica Complex and the upper
aquifer of the Scaglia Complex. The Calcare Massiccio aquifer, with a thickness ranging between 700
and 900 m, represents the most important hydrogeological complex in the Umbria-Marche limestone
ridge. It is characterized by a regional flow through highly-developed fissures and karst conduits.
The Maiolica aquifer is separated from the basal aquifer by a sequence (from 100 to 350 m thick) of
Upper Jurassic and calcareous marls (Calcari ad Aptici, Diasprini, Posidonia, Rosso Ammonitico Fms.)
that act as an aquiclude. This sequence can be substituted locally by the very thin (20–100 m) Bugarone
Calcareous Fm., which transforms it into an aquitard from a hydrological point of view. The Maiolica
Complex is rather thick (200–400 m) and is constituted of more limited karstification but a high degree
of fracturation. This aquifer is overlain by the Marne a Fucoidi Fm., a low permeability formation that
acts as a regional aquiclude [36].

Finally, the Marne a Fucoidi Fm. is overlain by the Scaglia aquifer complex, which consists of
alternating limestone and marly limestone layers with chert nodules and ribbons [16]. This complex
is characterized by a high fracturation degree and a significant thickness (200–400 m), which affords
it high storage capacity of infiltration water. Above, the aquifer is capped by a low permeability
clayey-marly-calcareous sequence (Scaglia Variegata, Scaglia Cinerea, Bisciaro and Schlier Fms),
usually enclosing an independent aquifer [42]. Eighty percent of the groundwater resource of the
Umbria-Marche hydrogeological domain surfaces at liner springs [36], i.e., when a stream or river is
directly fed by groundwater of saturated hydrogeological system.

The outcropping area of hydrogeological complexes playing an active role in groundwater
recharge, thanks to their high capability of infiltration [43]. The extension of recharge area of each
spring has been defined on lithological and structural geological data and compared with the literature
data [44–48]. Recharge area of Scirca spring has been localized using multi-tracer tests from the
karstic conduits [44] and correspond to specific lithological and geological structures [46]. The Vaccara,
Boschetto, and Capo d’Acqua recharge areas have been calculated in the water balance of the Mountains
of Gualdo [47]. Finally, the recharge area of the Bagnara spring corresponds to the outcrop of the core
structure; this interpretation seems to be confirmed by the hydrochemical characteristics of the water
(calcium bicarbonate with few increases of sulphates), which would indicate a fed due to the deep
aquifer of Mt Pennino [48].

The area under study, about 220 km2, includes the following main reliefs: Mt. Cucco (1566 m
a.s.l.), Mt. Maggio (1362 m a.s.l.), Mt. Serrasanta (1423 m a.s.l.), Mt. Penna (1432 m a.s.l.), Mt. Burella
(1095 m a.s.l.), and Mt. Pennino (1572 m a.s.l.). Each relief represents a distinct hydrostructure with
internal aquifer systems connected to one or more springs in their recharge areas (Table 1).

Table 1. General characteristics of the carbonate complexes and their related catchment areas (geographic
coordinates are expressed in WGS84 UTM Zone 33N).

Hydro-Structures Spring Latitude Longitude Spring Altitude
(m a.s.l.)

Recharge
Area (km2)

Mt Cucco Scirca 323,040.1821 4,774,571.7434 575 8.0
Mt Maggio Vaccara 325,711.2678 4,774,969.1254 468 6.2
Mt Penna Boschetto 324,530.5164 4,782,340.2809 538 11.5
Mt Penna Capo d’Acqua 316,236.3956 4,802,705.2176 570 7.4
Mt Burella San Giovenale 301,037.8923 4,823,140.7066 480 10.5

Mt Pennino Bagnara 321,608.1134 4,783,863.2012 630 4.9

2.2. Data Acquisition

The rainfall data (mm) has been collected by automated rain gauges provided by the Hydrographic
Service of Umbria Region; in particular, only three rain gauge stations located within the study area
were considered (Table 2) and the data were collected over eight years (from 01 January 2007 to
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31 December 2015). Snowfall was recorded by only the MC station (located at 1116 m a.s.l.); therefore,
the available dataset was not enough to cover the entire study area.
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Figure 1. Simplified hydrogeological map of the study area at a regional scale (Northern Apennines),
illustrating different geological and hydrogeological elements: a partial stratigraphic column of the
Umbria-Marche stratigraphic succession spanning the Upper Triassic to the Upper Miocene; the
locations of the studied aquifer springs: (1) Scirca spring, (2) Vaccara spring, (3) Boschetto spring, (4)
Capo d’acqua spring, (5) San Giovenale spring, and (6) Bagnara spring; the hydrogeological recharge
area boundaries; the locations of the rain gauge stations used: (a) Mt Cucco station, (b) Gualdo Tadino
station, and (c) Nocera Umbra station.
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Table 2. Location and characteristics of rain gauge station (geographic coordinate system is expressed
in WGS84 UTM Zone 33).

Rain Gauge
Station

Gauge Station
Code Latitude Longitude Monitored

Period
Station Altitude

(m a.s.l.)

Mt Cucco MT-13015 316,280.8388 4,805,532.5274 2007–2015 1116
Gualdo Tadino GT-27422 321,232.2980 4,789,176.7740 2007–2015 563
Nocera Umbra NU-12907 320,698.8825 4,775,721.4408 2007–2015 542

The UM area has a typical subcontinental climate characterized by a dry and warm summer and
a wet period during autumn, winter, and spring. The monthly rainfall reaches a maximum during
November and a minimum in July and August. In the more elevated zones (above 1000 m a.s.l.),
the precipitation can present as snow during winter (mainly in January–February), with a thickness of
a few decimeters, which can have a significant effect on groundwater aquifer recharge (Figure 2).
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Figure 2. Daily rainfall data provided by of the Hydrographic Service of Umbria Region for three rain
gauge stations: MC (Monte Cucco), GT (Gualdo Tadino), and NU (Nocera Umbra).

The discharge of six carbonate springs (Scirca, Vaccara, Boschetto, Capo d’Acqua, San Giovenale,
and Bagnara) of the Umbria-Marche Apennines monitored by ARPA Umbria (www.arpa.umbria.it),
with an acquisition time interval of one day, was analyzed. All springs treated were captured for
potable purposes and were measured by eight channel electromagnetic and ultrasound systems.
The monitoring systems recorded the minimum, mean, and maximum value each hour, and the dataset
was computed at the end of the day and transmitted as daily mean. Figure 3 shows a subset of about
eight years of the available data. Due to a lack of continuity in data recording, some gaps are present
in the time series. The statistical analyses of dataset quality are presented in Table 3.

Table 3. General characteristics of the time-series of the analyzed aquifer springs.

Spring Monitored Period No. of All Data No. Miss Data Time-Series Lag (%)

Scirca 2007–2015 3186 107 3.4
Vaccara 2007–2015 3097 754 24.3

Boschetto 2007–2015 3194 246 7.7
Capo d’Acqua 2007–2015 3232 55 1.7
San Giovenale 2007–2015 2107 180 5.8

Bagnara 2007–2015 3240 47 1.5

www.arpa.umbria.it
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2.3. Recession Analysis

Recession analysis focuses on the recession curve, which is the portion of the hydrograph
immediately following a stream peak (and rainfall event), when flow diminishes. In this study,
the Maillet exponential equation was used (Equation (1)) because it generates good fits for analyzing
hydrograph recession curves and accurately describes recession over long time periods [12,13,49]:

Qt = Q0 × e−αit (1)

where Qt is the discharge at time t and Q0 is the discharge at time t = 0. Specifically, the modified
Maillet equation was used, which can be expressed by a sum of several exponential components that
represent the presence of possible sub-regimes [13,18,50–52]:

Qt =
∑n

i=1
Q0i × e−αit (2)

where i represents the media i in the aquifer, Q0i represents the discharge of media i at t = 0, and n
represents the number of sub-regimes or flow components. A karst aquifer can always be divided
into different sub-regimes based on the different hydraulic conductivities of the media that comprise
it [52–54]. Therefore, the modified Maillet equation can be written as:

Qt = Qq × e−αqt + Qb × e−αbt (3)

where Qq and Qb are the initial discharges, and αq and αb are the recession coefficients of the quickflow
and baseflow, respectively.

Analyzing the hydrographs of each aquifer system (Figure 3) has shown that the recession curves
do not exhibit the same trends within the time series analyzed, making it impossible to use a single
interpolating curve to characterize all aquifer systems. Therefore, a procedure for dividing the curve
into single segments with different slopes was needed. The Master Recession Curve methodology
enables one to work simultaneously with numerous recession periods, making the influence exerted by
precipitation negligible and obtaining realistic parameters of each aquifer system. Hence, MRCs were
calculated using the freeware software RC 4.0 of the HydroOffice [21], applying the manual method tool
to create a graphical analysis and to divide curves into different segments having homogeneous trends,
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thereby enabling separate analysis. The conceptual model applied is that of a linear reservoir [8,9],
which follows Maillet’s exponential recession function shown above.

2.4. Time-Series Analysis

The ACF evaluates a time series by quantifying the linear dependency of successive values over a
specified time period (lag time) [55]. It can be written as follows [28,50]:

For k > 0,

C(k) =
1
n

n−k∑
t=1

(xt − x)(xt+k − x) (4)

r(k) =
C(k)
C(0)

(5)

where r(k) is the auto-correlation function, C(k) is the correlogram, k is the time lag (k = 0 to m), n is the
length of the time series, xt is the value of the studied variable at time t, and m is the cutting point [56].
The cutting point determines the interval within which the analysis is conducted. The correlogram
reflects the “memory effect” of a system [26,50,57,58], i.e., the time needed for the system to “forget” its
initial conditions, and corresponds to the lag time required for the ACF to reach 0.2 [54,55,59]. The CCF
is used to examine the dependence of output series y (discharge) on the input series x (precipitation)
and can be calculated using the following equation [27]:

For k > 0,

Cxy(k) =
1
n

n−k∑
t=1

(xt − x)(yt+k − y) (6)

rxy(k) =
Cxy(k)

σxσy
(7)

where k is the time lag, n is the length of the time series, xt and yt are input and output time series,
respectively, rxy (k) is the cross-correlation function, σx and σy are the standard deviations of the time
series, and Cxy (k) is the cross-correlogram [56].

Both of ACF and CCF analyses are performed using correlograms. A steep slope in the correlogram
means a fast response of the aquifer to a rainfall event and indicates a higher karstification degree.
In particular, CCF analysis can provide strong support for the identification of the main rainfall
contribution and the travel time through the main infiltration pathways [60]. The results can be
compared using recession coefficients estimated by hydrograph analysis.

3. Results

3.1. Discharge Time Series Description

Monitoring in the field has provided the time series of daily average discharge of six springs
covering about eight years, from 2007 to 2015. The hydrographs in Figure 3 show that the springs are
reactive, i.e., that the discharges vary after rainfall events throughout the year. However, the response
of each spring reflects the spatial distribution of permeability in each respective aquifer and their
hydrogeological characteristics [61]. The amplitude of the discharge variations depends both on the
size of the recharge area and on the porosity and heterogeneity characteristics of the carbonate reservoir.

The Scirca spring is located in the SW limb of the Mt. Cucco anticline, at 575 m a.s.l. The spring’s
catchment area is about 8 km2 and its discharge averages 214.9 l/s [44]. The time-series of the Scirca
spring is rather continuous and the hydrograph passes from quick- to baseflow conditions, with the
corresponding rapid decrease in water level, generally in early summer.

The waters of the Vaccara spring, set at an elevation of 468 m a.s.l, drains the SW limb of Mt.
Maggio. The spring has a large recharge area of 6.2 km2 and a mean discharge of about 119 l/s.
The time-series is rather incomplete (24% of data is missing). The gaps in data are due to instrumental
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errors. The spring’s hydrograph shows a very fast response to recharge events and rather clear passages
from quick- to baseflow during dry periods.

The hydrograph for Boschetto spring was very similar to that of Vaccara spring, exhibiting clear
differences between baseflow and quickflow regimes. This spring is located on Mt. Penna at 538 m
a.s.l. and has a mean discharge of about 185 l/s, which is about 65 l/s more than the Vaccara spring.
This difference can be explained by Boschetto spring’s larger recharge area (about 11.5 km2).

The Capo d’Acqua spring is located on the same hydrostructure as Boschetto spring but drains
the other side of the relief (NE limb of Mt. Penna). This spring has an average discharge of 94.2 l/s
and does not show a clear passage from quickflow to baseflow regimes because of a significant lag in
discharge response following infiltration. The estimated catchment area is about 7.4 km2.

The San Giovenale spring drains the greatest amount of water of all other carbonate systems in
this study, with an average discharge of 394.7 l/s. The estimated recharge area is about 10.5 km2 and
the karst system shows the same behavior as the Capo d’Acqua spring. Differences between quick-
and baseflow regimes are not observable and the decrease in water level is very slight and delayed.
The high average discharge of the San Giovenale spring cannot be explained by the size of the recharge
area. Most likely, this carbonate system is supplied by non-negligible groundwater flows from the
Colfiorito plain [43].

The hydrograph of Bagnara spring shows characteristics intermediate between those of the Scirca,
Vaccara and Boschetto springs, and those of the San Giovenale and Capo d’Acqua springs. This karst
aquifer shows a fast response to infiltration in a quickflow regime and a slight decrease in discharge
during the baseflow regime. This behavior indicates a very marked spatial heterogeneity in porosity
along the aquifer.

Thus, the Scirca, Vaccara, Boschetto, and Bagnara springs show a quick response to a rainfall event
characterized by steep peaks followed by rapid decreases in water level. This behavior is characteristic
of all karst systems with a well-developed network of fractures and conduits. The San Giovenale and
Capo d’Acqua springs, on the other hand, show a delayed response to rainfall events, with a slow
decrease in discharge over time. This behavior is typical of a poorly-developed karst systems, where
groundwater circulation occurs through the matrix and fracture networks.

3.2. MRCs Analysis

Recession curve analysis was performed on hydrographs from six aquifer springs located in
the Umbria-Marche Apennines. Different shapes of a spring’s recession curve are attributable to
drainage from different components of the groundwater system, reflecting karstification degree [15].
The karstification of soluble rock can be considered the most important geological phenomenon
influencing the hydraulic behavior of carbonate aquifers. The presence of different lithologies in the
catchment area can highlight these hydraulic differences [62].

The Master Recession Curve methodology was used to work simultaneously with numerous
recession periods (Figure 4), making the influence exerted by precipitation negligible and allowing to
obtain an average value representative of the entire recharge area [16].

Changes in the slope of the recession curve have been attributed to aquifer heterogeneity [63,64],
whereas recession curves that can be expressed by one exponent represent homogeneous conductivity
and storage properties. The discharge of the aquifer can be considered approximately constant and
specific for each aquifer-spring system when the changes of hydraulic conditions (transmissivity,
water table area) are not appreciable during the emptying associate with the recession limb of the
hydrograph [65]. Therefore, recession analysis using the MRC methodology has allowed to identify two
groups with different hydraulic behavior: aquifers with unimodal behavior (having one sub-regime)
and aquifers with bimodal behavior (having two sub-regimes). All the aquifer springs analyzed have a
good fit with the exponential equation of Maillet [9], indicating that the more appropriate conceptual
model is that of a linear reservoir [8,9].
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A recession curve analysis was conducted on records from eight years, resulting in about seven
intervals (individual recessional discharge sets). These partial recession curve records were assembled
to create a master recession curve of each spring (Figures 4 and 5). Tables 4 and 5 present the recession
coefficients, discharge range, duration of sub-regime of measured recession curves, and the number of
assembled individual recessional discharge successions used to create an MRC of each spring.
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(b) San Giovenale spring.

For the Scirca, Vaccara, Boschetto, and Bagnara springs, the results showed a significant degree of
curve separation in two segments, characterized by different recession constants (Figure 4). Indeed,
the values of the recession coefficients of quickflow sub-regimes (αq) are rather high, ranging from 0.015
d−1 (Bagnara spring) to 0.1 d−1 (Boschetto spring). This may be caused by the change of hydraulic or
geometric characteristics of the aquifer during the depletion process [65]. According to Amit et al. [11],
the exponential term with the largest slope represents a rapid depletion of flow channels with the
highest hydraulic conductivity.
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Table 4. Characteristics of recession curves of springs with bimodal behavior and their related
sub-regimes (baseflow or quickflow).

Spring No. of Recession
Segments

Qb
1

(l/s)
αb

(d−1)
tb

(day)
Qq

2

(l/s)
αq

(d−1)
tq

(day)

Scirca 8 180 0.0060 225 220 0.025 150
Vaccara 7 90 0.0053 200 220 0.080 60

Boschetto 7 180 0.0065 200 650 0.100 50
Bagnara 6 120 0.0085 300 180 0.015 200

1 b = baseflow; 2 q = quickflow.

Table 5. Recession curve characteristics of aquifer springs with unimodal behavior.

Spring No. of Recession
Segments

Q
(l/s)

α

(d−1)
tr

(day)

Capo d’acqua 4 145 0.0074 200
San Giovenale 6 380 0.0115 200

The transition from quickflow to baseflow occurs after 150 and 180 days in the Scirca and Bagnara
(Figure 4a,d) springs, indicating that fast drainage is the dominant component for most of the years.
In contrast, the baseflow sub-regime is the dominant component of Vaccara and Boschetto springs,
with a sub-regime transition occurring after about 30 and 50 days in Boschetto and Vaccara springs
(Figure 4b,c), respectively. The parameters of these springs reflect the structural properties of their
aquifers, such as karstification degree, fracture networks, and conduit networks.

The Capo d’Acqua and San Giovenale springs present a unimodal behavior because their MRCs
can be expressed by one exponent (Figure 5). This means that their aquifer systems are characterized by
homogeneous conductivity and storage properties. However, these two springs differ in their recession
coefficients. Capo d’Acqua spring has a recession coefficient of 0.0074 d−1, a value with the same
order of magnitude as baseflow recession coefficients of the previously described springs with bimodal
behavior. An exponential term with a small slope corresponds to slow depletion of a flow network
with low hydraulic conductivity [11]. The recession coefficient of San Giovenale spring (0.0115 d−1),
on the other hand, is very similar to quickflow components of aquifer springs with bimodal behavior.

The recession period estimated by the MRC method is 200 days for both carbonate systems
(Table 6). The difference between the two aquifers is in their dominant components (quickflow
vs. baseflow sub-regimes). Capo d’Acqua spring is dominated by a baseflow sub-regime, where
drainage is controlled by matrix and fracture network porosity, while San Giovenale spring has a
quickflow-dominated sub-regime, characterized by a fast drop in water level controlled by fracture
and conduit networks.

Table 6. Time series analysis parameters: system memory effect, maximum discharge/rainfall
cross-correlation coefficient, and time lag for maximum cross-correlation coefficient (Q discharge).

Aquifer Spring Memory Effect (days) Cross-Correlation Coef. Time LagSS (days)

Scirca 80 0.24 13
Vaccara 90 0.18 2

Boschetto 89 0.27 2
Capo d’Acqua 90 0.18 74
San Giovenale 150 0.18 119

Bagnara 121 0.20 39
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3.3. Time-Series Analysis: Autocorrelation and Cross-Correlation

3.3.1. Autocorrelation Function (ACF)

The autocorrelation function treatment quantifies the linear dependency of successive values over
a specific time period and reflects the memory of the system [61]. The values estimated using this
method are shown in Table 6. The daily time series correlograms for each spring are shown in Figure 6.
The correlogram of the Scirca spring shows a rapid and regular ACF slope that reaches rk = 0.2 after
80 days. The shape of the autocorrelation functions and the high memory effect implies a significant
storage capacity, probably linked to a well-developed fracture network.

Water 2020, 12, 1039 11 of 21 

 

baseflow sub-regime. In the case of the Boschetto spring, the decrease in the autocorrelation function 
is uneven and marked by two discrete components. The first drops quickly, within about 20 days, 
while the second decreases more slowly and reaches rk = 0.2 at 89 days, indicating a strong duality of 
these karst systems. The Bagnara spring shows a very slight decrease in ACF with no steps. The 
estimated memory effect is high, with a value of about 121 days, indicating a higher storage capacity 
and high filtration potential of this aquifer systems. The correlogram of Capo d’Acqua spring 
discharge displays a regular decrease in the slope of the ACF, reaching rk = 0.2 with the same time lag 
as the other systems seen thus far (90 days). This suggests the prevalence of the baseflow component, 
probably due to a fractured matrix. The ACF for the flow rates at San Giovenale spring diminishes 
very slowly when the time lag increases. This karst system shows a memory effect of 150 days, 
presenting great inertia and indicating that the aquifer has a large storage capacity, which is drained 
very slowly. 

 
Figure 6. Auto-correlation functions of the analyzed aquifer springs; (a) Scirca spring, (b) Vaccara 
spring, (c) Boschetto spring, (d) Capo d’Acqua spring, (e) San Giovenale spring, and (f) Bagnara 
spring. 

3.3.2. Cross-Correlation Function (CCF) 

The delays between inputs and outputs of various springs are useful information in the regional 
study of a carbonate aquifer because they give an estimate of the variation in pressure pulse transfer 
times and of particle travel times through the aquifer [29]. The delays are also significant in the 
modeling of the aquifer and indicate the karstification degree of a karst system. 

The wet and dry periods, which induce high and low flow periods in the spring discharge series, 
appear more difficult to define in the rainfall time-series [66]. The lowest values of the rainfall cause 
the most intense droughts in the spring discharge series, as shown for example by the period included 
between June 2011 and March 2012. 

Rainfall data of different rain gauge stations were used in relation to correspondent 
hydrostructure and proximity to them. Therefore, the MC station has been used for the Scirca spring, 

Figure 6. Auto-correlation functions of the analyzed aquifer springs; (a) Scirca spring, (b) Vaccara
spring, (c) Boschetto spring, (d) Capo d’Acqua spring, (e) San Giovenale spring, and (f) Bagnara spring.

The ACF of the Vaccara spring further confirms its bimodal behavior. First, it displays a rapid
decrease in the first days (10 days), comportment associated with a quickflow sub-regime; then, its slope
levels out, reaching rk = 0.2 at a much slower rate after 90 days, a response characteristic of a baseflow
sub-regime. In the case of the Boschetto spring, the decrease in the autocorrelation function is uneven
and marked by two discrete components. The first drops quickly, within about 20 days, while the
second decreases more slowly and reaches rk = 0.2 at 89 days, indicating a strong duality of these
karst systems. The Bagnara spring shows a very slight decrease in ACF with no steps. The estimated
memory effect is high, with a value of about 121 days, indicating a higher storage capacity and high
filtration potential of this aquifer systems. The correlogram of Capo d’Acqua spring discharge displays
a regular decrease in the slope of the ACF, reaching rk = 0.2 with the same time lag as the other systems
seen thus far (90 days). This suggests the prevalence of the baseflow component, probably due to a
fractured matrix. The ACF for the flow rates at San Giovenale spring diminishes very slowly when the
time lag increases. This karst system shows a memory effect of 150 days, presenting great inertia and
indicating that the aquifer has a large storage capacity, which is drained very slowly.
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3.3.2. Cross-Correlation Function (CCF)

The delays between inputs and outputs of various springs are useful information in the regional
study of a carbonate aquifer because they give an estimate of the variation in pressure pulse transfer
times and of particle travel times through the aquifer [29]. The delays are also significant in the
modeling of the aquifer and indicate the karstification degree of a karst system.

The wet and dry periods, which induce high and low flow periods in the spring discharge series,
appear more difficult to define in the rainfall time-series [66]. The lowest values of the rainfall cause
the most intense droughts in the spring discharge series, as shown for example by the period included
between June 2011 and March 2012.

Rainfall data of different rain gauge stations were used in relation to correspondent hydrostructure
and proximity to them. Therefore, the MC station has been used for the Scirca spring, the GT station
has been used for the Vaccara, Boschetto, and Capo d’Acqua springs, and the NU station has been
used for the San Giovenale and Bagnara springs.

The CCFs between the rainfall and discharge time series of each spring are shown in Figure 7,
while the relative parameters (maximum cross-correlation coefficients and their related time lag) of
the time-series analysis are listed in Table 6. The cross-correlograms show rather low rxy(k) values
(between 0.18 to 0.27). This indicates that the precipitation signal is significantly reduced between its
entry into the system and the time when it reaches the water table via the unsaturated zone [29].
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spring, (c) Boschetto spring, (d) Capo d’Acqua spring, (e) San Giovenale spring, and (f) Bagnara spring.

Cross-correlograms of the Boschetto, Scirca, and Vaccara springs are each characterized by a sharp
peak (0.27, 0.24, and 0.18, respectively) that diminishes rather rapidly in the first days, reflecting a short
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response time (2 days for Boschetto and Vaccara springs and 13 days for Scirca spring). Subsequently,
the CCFs gradually decrease with a gentle slope for about 50 days. This shape indicates the duality of
the aquifers, with the sharp peaks indicating a transmissive function and the slight decreases indicating
a capacitive function [61].

Cross-correlation functions of the Capo d’Acqua, San Giovenale and Bagnara springs show much
more regular unimodal trends than the previously described springs. In fact, CCFs decrease rather
slowly with a gentle slope. They have barely perceptible mean response delays, with cross-correlation
coefficients ranging between 0.18 to 0.20. This behavior corresponds to that of a barely karstified
system, similar to a porous medium in which there is no quickflow.

The response times of these carbonate systems are 39 days for the Bagnara spring, 74 days for the
Capo d’Acqua spring, and 119 days for the San Giovenale spring. These results indicate a gradual
emptying of the hydric system with a large storage capacity that regulates the input flow (baseflow
sub-regime).

Finally, in the CCFs of both the Boschetto and Bagnara springs, a series of peaks were observed
after the initial peak (64, 142, and 201 days for the Boschetto spring, 68, 145, and 232 days for the Bagnara
spring). It appears that these may have been caused by one or more additional flow components
within the aquifers. An explanation for this behavior must be sought in the slight control exercised by
the system on the input function. Moreover, further limitations in the rainfall-discharge relationship
exist, since spring discharge can depend on the rainfall of the previous year [60].

4. Discussion

The recession coefficient is one of the most important parameters for understanding aquifer
characteristics. In this study, the Master Recession Curve method was applied to recession periods
that are mainly controlled by the rate of decline in the water table [67]. Different recession coefficients
reflect flow regimes with different hydraulic conductivities [5]. Therefore, the recession coefficient is
always used to identify the structural properties (matrix, fractures, and conduit networks) and the
karstification degree of a karst aquifer [23,52–54,68,69].

Applying the MRC method to the six springs allowed to define two main structural types of the
karst systems in question (aquifer heterogeneity): systems with a unimodal behavior (characterized
by a single flow component, αb) and systems with a bimodal behavior (characterized by two flow
components, αq andαb). The number of flow phases depends mainly on the degree of karstification [70].

The recession analysis (illustrated in the equation in Figure 8) exposed different groups of aquifer
systems. Bimodal aquifers have mean recession coefficient values during the quickflow sub-regime of
about an order of magnitude higher than recession coefficients estimated during baseflow conditions.
The MRCs displayed values between 5.3 × 10−3 (αb of Vaccara spring) and 0.1 day−1 (αq of Boschetto
spring). This is in agreement with Mangin [10] and Amit et al. [11] and confirms the presence of two
types of flow (fast and slow), as verified by the two main slopes exhibited by the recession curves.
The exponential term with the largest slope, αq, represents a fast depletion (quickflow sub-regime) of
flow channels with high transfer capacity, while the largest α-value likely reflects extensive fracturing
and intrakarst connectivity [11].

The Capo d’Acqua and San Giovenale springs (unimodal aquifer systems) present only one
type of flow, which, however, have very different magnitudes. In fact, the Capo d’Acqua spring was
characterized by an exponential term with a small slope, about 7.4 × 10−3 day−1 (analogous to bimodal
aquifers during baseflow conditions), whereas the San Giovenale spring showed a depletion coefficient
of 1.15 × 10−2 day−1, which is the lowest value, but bears the same magnitude as bimodal aquifers
under a quickflow sub-regime. Therefore, the drainage of the Capo d’Acqua spring occurs as a diffusive
flow in low hydraulic conductivity conditions, most likely controlled by a dense fracture network in
the rock matrix. In contrast, the discharge of the San Giovenale spring occurs in intermediate flow
conditions (diffusive-turbulent) through a well-developed fracture network with the possible presence
of karst conduits of a limited extent.
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Figure 8. Geological sketch of flow dynamics in the carbonate hydrostructures: geological
cross-section, graphics of recession curves (MRC analysis), and their relative equations describing karst
spring discharge.

The analysis emphasizes the role played by the structural geological setting, revealing a net
demarcation of the dominantly calcareous cores of anticlines, surrounded by the impermeable Marne a
Fucoidi belt and containing variably extensive basal aquifers in line with Mastrorillo and Pettita [71].

A summary of the equations describing discharge and the relative karstification degree estimated
using a 10-degree scale in accordance with Malìk and Vojtková [23] for the six analyzed springs is
shown in Table 7. The Boschetto and Bagnara springs showed a karstification degree of 4.0, a value
only slightly higher than those of the Scirca and Vaccara springs, both of which showed a karstification
degree of 3.7. These aquifer springs are characterized by aquifers with irregularly developed fissure
networks dominated by open micro-fissures, which are probably associated with shallow infiltration
zones (upper portion of the aquifer) mainly characterized by drainage of the Maiolica Complex.
In addition, the presence of karst conduits of a limited extention in the basal portion of the aquifer
linked to drainage of the Massiccio Complex, where karstic processes are very common, is very likely.
In extreme cases, even short-term turbulent flow might occur in this type of rock environment. From a
geological point of view, these aquifers are characterized by a hydraulic connection between the
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Massiccio Complex and the overlying Maiolica Complex (Figure 8). Moreover, in the Mt Pennino
hydrostructures, the hydraulic continuity between Scaglia aquifer complex and the below basal aquifer
is not excluded [48].

Table 7. Karstification degrees of spring recharge areas according to recession curve parameters,
after [15,23].

Spring Characteristics of Recession Curve Parameters Karstification Degree

Scirca αb > 0.0043
αc < 0.060 3.7

Vaccara αb = 0.0041 to 0.018
αc = 0.055 to 0.16 4.0

Boschetto αb = 0.0041 to 0.018
αc = 0.055 to 0.16 4.0

Bagnara αb > 0.0043
αc < 0.060 3.7

Capo d’Acqua α > 0.007 2.3
San Giovenale α > 0.007 2.3

The Capo d’Acqua and San Giovenale springs showed a single exponential flow component with
values of recession coefficients (α > 0.007) associated with a karstification degree of 2.3 (much lower
than carbonate aquifers with the duality of discharge). Malík and Vojtková [23] described the karst
systems with this karstification degree as characterized by a recharge area with tectonic faults filled
with crushed material with higher permeability and lower buffering capability in relation to discharge.
As shown in Figure 7, the water discharged by the Capo d’Acqua and San Giovenale springs is drained
only by the Maiolica Complex. These aquifers are confined below by an aquiclude of Upper Jurassic
and calcareous marls. The Maiolica complex, as well as the basal aquifer, can be characterized as a less
developed karst network. Additionally, the Capo d’Acqua and San Giovenale systems are characterized
by shallow aquifers, where drainage is controlled almost exclusively by fracture networks.

Hence, in terms of regional hydrogeology, the Umbria-Marche carbonate domain generally has
deeper groundwater flowing through hydrogeological complexes consisting of the Calcare Massiccio,
Corniola, and Maiolica formations [72]. Furthermore, the structural, geological, and geomorphological
conditions have favored the emplacement of a drainage network transversal to the axes of the carbonate
ridges [73].

Employing the daily time series data of each spring, an interpretation of auto-correlation and
cross-correlation functions proved to be a valuable tool in the study of these aquifer systems, although
individual analysis has not shown the same results, because the two hydrodynamic systems (bimodal
and unimodal) were not recognized in some cases. The auto-correlation functions (Figure 6) display
regular correlogram curves in most cases. Only the Vaccara and Boschetto springs present sharp drop
offs in their ACFs in the first 10–20 days, followed by components with much gentler slopes, with a
decorrelation time of about 90 days. This confirms the bimodal behavior in the springs indicated by
recession analysis. Such behavior points to the existence of an appreciable quickflow component in the
initial days, linked to karst conduits that quickly drain the aquifer after a rainfall event, and a dominant
baseflow sub-regime in the later days, controlled by the emptying of fracture networks. This complex
and heterogeneous framework suggests that, when a rainfall event occurs, rainwater reaches the springs
through different flowpaths in both unsaturated and saturated zones. Once rainwater reaches the
saturated zones, the hydraulic head raises instantaneously and causes a rapid discharge increase [74].

In contrast, univariate analysis of the Scirca and Bagnara springs does not reflect the duality
of aquifer systems indicated by recession analysis. The auto-correlation functions show regular,
very gentle slopes with a decorrelation time of 80 days for the Scirca spring and 121 days for the
Bagnara spring. The memory effect is therefore rather high for both systems, in which the baseflow
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component should dominate [75]. The explanation for this is probably that the karst features are
mainly located in the unsaturated zone [44].

The correlograms of the San Giovenale and Capo d’Acqua springs, on the other hand, are in
agreement with the recession analysis, presenting one flow hydrodynamic component (unimodal
behavior). The time lag of the Capo d’Acqua spring has a similar value to those seen thus far, about
90 days. Considering the small recharge area and the limited thickness of the Capo d’Acqua aquifer,
the aquifer system is characterized only by a flow component under baseflow conditions and is
associated with a low karstification degree. The auto-correlation function of the San Giovenale spring
presents the highest memory effect of all aquifer systems analyzed, reaching rk = 0.2 after about
150 days. This great inertia indicates a low karstification degree and, consequently, the large storage
capacity of the system. From a hydrogeological point of view, the aquifer is characterized by a large
recharge area (10.5 km2) and a rather limited thickness (Figure 7d), due to drainage that occurs only
into the Maiolica complex.

The analysis of cross-correlation functions produced approximately the same results as those
of recession analysis, and partially the same as those of the auto-correlation analysis, although the
coefficients estimated between spring discharges and rainfall events were rather low (0.18–0.27). In fact,
the CCFs of Scirca, Vaccara, and Boschetto springs indicated a bimodal character, showing a discrete
peak with a delay of a few days. This can be interpreted as a rapid response of the aquifer to a
rainfall occurrence.

In contrast, the CCFs of the Capo d’Acqua, San Giovenale, and Bagnara springs show a long
impulsional response, which exceeds 200 days, with a rather high delay ranging from 39 days (Bagnara
spring) to 119 days (San Giovenale spring). This indicates a powerful memory of the systems and the
dominance of baseflow at the expense of quickflow.

5. Conclusions

In order to define the characteristics of groundwater circulation in carbonate hydrostructures of
the Umbria-Marche Apennine, the discharge time-series from 1 January of 2007 to 31 December of
2015 (eight years) of six aquifer springs were analyzed, using different methodologies (MRC “master
recession curve” analysis, ACF “auto-correlation function” analysis, and CCF “cross-correlation
analysis”). The carbonate aquifers analyzed simulated drainage under linear reservoir conditions,
where discharge followed the exponential form of the modified Maillet equation, although not
all systems showed the same structural properties. In fact, two types of aquifers were observed:
a carbonate aquifer with bimodal behavior and a carbonate aquifer with unimodal functionality. These
substantial differences can be attributed to the different structural and geological settings of individual
hydrostructures, which control the different components of groundwater systems [5].

In the hydrostructures, springs represent the “spill-over” of the deep regional flow. The recharge
areas of springs and deep flow are separated by dynamic groundwater divides, which move horizontally
as the water table falls or rises [76].

Specifically, the discharges of the Scirca, Vaccara, Boschetto, and Bagnara springs were
characterized by two hydrodynamic sub-regimes (bimodal behavior), where the fracture networks
and micro-fissures (rock matrix) controlled the slow drainage (baseflow sub-regime) with an αb of
about 10−3, and the conduit networks controlled the fast drainage (quickflow sub-regime) with an
αq of one order of magnitude lower than that of the matrix. This reflects the karstification degree
(3.7–4, according to the classification of Malík and Vojtková [23]), where conduit networks of limited
extent were characterized by rare interconnected systems and surrounded by a fractured rock mass
with irregularly developed and moderately opened fissures. These carbonate aquifers were defined by
the hydrostratigraphic contact between the Maiolica Complex and the Massiccio Complex. The Capo
d’Acqua and San Giovenale springs, on the other hand, presented unimodal behavior, showing a single
exponential flow component with values of recession coefficients lower than other, previously seen
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aquifer systems. This is explained by groundwater circulation that happens only within the Maiolica
complex, where the karst is scarcely developed, and water moves through fracture networks [77].

When the recession coefficient increased with time, a more rapid decrease of discharge was found
and little available water could be supplied. This is what happened during the quickflow components
of the aquifer with bimodal behavior (Scirca, Vaccara, Boschetto, and Bagnara springs). In contrast,
when the recession coefficient decreased continuously with time, the decrease of the discharge was
slower than the exponential recession, and the aquifer provided more available water during long
dry periods [78]. This is represented by the aquifer with unimodal behavior (San Giovenale and Capo
d’Acqua spring) and by a baseflow component of the aquifer with bimodal behavior.

Both auto-correlation and cross-correlation functions showed approximately the same results as
the recession analysis. Bimodal aquifers showed a steep slope and a short lag time (2–13 days) followed
by a gentle slope, whereas unimodal aquifers showed a somewhat uniform decrease with high delay
times. In addition, both the CCF and the ACF indicate a large memory effect (over 80 days) and large
response time (over 100 days), implying the dominance of the baseflow sub-regime. This suggests
great inertia, showing how the aquifers filter the information given by rainfall events very well.
Consequently, the analyzed aquifer systems highlight large storage capacity (very important for the
water management) and the attenuation character.

Taking into consideration the results achieved, it can be concluded that the structural
and hydrogeological setting influences the structural properties of aquifers and, consequently,
the groundwater circulation within the Apenninic carbonate sequence. The hydrostructures contained
within the Maiolica Complex present a high fracturation degree and a slightly karstified rock mass,
which exerts the dominant influence over infiltration and percolation. Here, groundwater circulation
occurs within fracture networks and discharge is dominated by baseflow sub-regimes (probably with
a Darcian flow), resulting in unimodal functionality. The aquifers contained within the Massiccio
Complex, on the other hand, have a higher karstification degree, which controls water circulation
characterized by different flow components. This complex is affected by moderately developed conduit
networks, especially in the deeper aquifer zones, which results in a quickflow sub-regime and, therefore,
dual behavior.

Due to these specific characteristics, fractured and karst aquifers are of increasing interest because
they represent a significant percentage of the world’s water supply. Aquifers are extremely vulnerable
to the various sources of pollution; hence, the exploitation, maintenance of water quality, and the
protection of fractured and karst aquifers are of vital importance. Therefore, the knowledge of recession
coefficient is very helpful in water management.
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