Extreme Floods in Small Mediterranean Catchments: Long-Term Response to Climate Variability and Change
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Palaeoflood Record
3.2. Palaeoflood Dating
3.3. Documentary Flood Record
3.4. Hydraulic Modelling
3.5. Frequency Analysis
4. Results
4.1. Uncertainties Affecting Flood Dating
4.2. Historical and Systematic Flood Records
4.3. Palaeoflood Hydrology
4.3.1. Flood Geomorphology and Sedimentology
4.3.2. Discharge Estimation
4.4. Flood Frequency Analysis
5. Discussion
5.1. Information Content of Palaeoflood Data
5.2. Palaeohydrology in the Climate and Environmental Context
5.3. Impacts of Global Change on Flood Frequency
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiménez Cisneros, B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Döll, P.; Jiang, T.; Mwakalila, S.S. Freshwater Resources. In Climate Change 2014—Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report: Volume 1: Global and Sectoral Aspects; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Volume 1, pp. 229–270. [Google Scholar]
- Redmond, K.T.; Enzel, Y.; House, P.K.; Biondi, F. Climate variability and flood frequency at decadal to millennial time scales. In Ancient Floods, Modern Hazards. Principles and Applications of Paleoflood Hydrology; House, P.K., Webb, R.H., Baker, V.R., Levish, D.R., Eds.; Water Science and Application Series; American Geophysical Union: Washington, DC, USA, 2002; pp. 21–45. [Google Scholar]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2013, 59, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Döll, P.; Jiménez-Cisneros, B.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Jiang, T.; Kundzewicz, Z.W.; Mwakalila, S.; Nishijima, A. Integrating risks of climate change into water management. Hydrol. Sci. J. 2014, 60, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Monjo, R.; Gaitán, E.; Pórtoles, J.; Ribalaygua, J.; Torres, L. Changes in extreme precipitation over Spain using statistical downscaling of CMIP5 projections. Int. J. Climatol. 2016, 36, 757–769. [Google Scholar] [CrossRef]
- Garijo, C.; Mediero, L. Assessment of Changes in Annual Maximum Precipitations in the Iberian Peninsula under Climate Change. Water 2019, 11, 2375. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, L.; Burek, P.; Feyen, L.; Forzieri, G. Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 2247–2260. [Google Scholar] [CrossRef] [Green Version]
- Mediero, L.; Santillán, D.; Garrote, L.; Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain. J. Hydrol. 2014, 517, 1072–1088. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Parajka, J.; Perdigão, R.A.P.; Merz, B.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Bonacci, O.; Borga, M.; et al. Changing climate shifts timing of European floods. Science 2017, 357, 588–590. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Lloveras, X.; Buytaert, W.; Benito, G. Land use can offset climate change induced increases in erosion in Mediterranean watersheds. Catena 2016, 143, 244–255. [Google Scholar] [CrossRef]
- Baker, V.R. Paleoflood hydrology: Origin, progress, prospects. Geomorphology 2008, 101, 1–13. [Google Scholar] [CrossRef]
- Benito, G.; Thorndycraft, V.R. Palaeoflood hydrology and its role in applied hydrological sciences. J. Hydrol. 2005, 313, 3–15. [Google Scholar] [CrossRef]
- Baker, V.R.; Kochel, R.C. Flood sedimentation in bedrock fluvial systems. In Flood Geomorphology; Baker, V.R., Kochel, R.C., Patton, P.C., Eds.; John Wiley & Sons, Ltd.: New York, NY, USA, 1988; pp. 123–137. [Google Scholar]
- Ely, L.L.; Enzel, Y.; Baker, V.R.; Cayan, D.R. A 5000-year record of extreme floods and climate change in the southwestern United States. Science 1993, 262, 410–412. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros-Canovas, J.; Stoffel, M.; Benito, G.; Rohrer, M.; Barriopedro, D.; García-Herrera, R.; Beniston, M.; Brönnimann, S. On the extraordinary winter flood episode over the North Atlantic Basin in 1936. Ann. N. Y. Acad. Sci. 2019, 1436, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lloveras, X.; Corella, J.P.; Benito, G. Modelling the Hydro-Sedimentary Dynamics of a Mediterranean Semiarid Ungauged Watershed Beyond the Instrumental Period. Land Degrad. Dev. 2017, 28, 1506–1518. [Google Scholar] [CrossRef]
- Corella, J.P.; Benito, G.; Wilhelm, B.; Montoya, E.; Rull, V.; Vegas-Vilarrúbia, T.; Valero-Garcés, B.L. A millennium-long perspective of flood-related seasonal sediment yield in Mediterranean watersheds. Glob. Planet. Chang. 2019, 177, 127–140. [Google Scholar] [CrossRef]
- Mateu, J.F. La Rambla de la Viuda. Clima e hidrología. Cuad. Geogr. 1974, 15, 47–68. [Google Scholar]
- Camarasa, A.M.; Segura, F. Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain. Catena 2001, 45, 229–249. [Google Scholar] [CrossRef] [Green Version]
- Machado, M.J.; Medialdea, A.; Calle, M.; Rico, M.T.; Sánchez-Moya, Y.; Sopeña, A.; Benito, G. Historical palaeohydrology and landscape resilience of a Mediterranean rambla (Castellón, NE Spain): Floods and people. Quat. Sci. Rev. 2017, 171, 182–198. [Google Scholar] [CrossRef]
- Calle, M.; Alho, P.; Benito, G. Channel dynamics and geomorphic resilience in an ephemeral Mediterranean river affected by gravel mining. Geomorphology 2017, 285, 333–346. [Google Scholar] [CrossRef]
- Calle, M.; Calle, J.; Alho, P.; Benito, G. Inferring sediment transfers and functional connectivity of rivers from repeat topographic surveys. Earth Surf. Process. Landf. 2020, 45, 681–693. [Google Scholar] [CrossRef]
- Benito, G.; O’Connor, J.E. Quantitative Paleoflood Hydrology. In Treatise on Geomorphology; Shroder, J.F., Wohl, E., Eds.; Academic Press: San Diego, CA, USA, 2013; Volume 9, pp. 459–474. [Google Scholar]
- Benito, G.; Sánchez-Moya, Y.; Sopeña, A. Sedimentology of high-stage flood deposits of the Tagus River, Central Spain. Sediment. Geol. 2003, 157, 107–132. [Google Scholar] [CrossRef]
- Thorndycraft, V.R.; Benito, G.; Rico, M.; Sopena, A.; Sanchez-Moya, Y.; Casas, A. A long-term flood discharge record derived from slackwater flood deposits of the Llobregat River, NE Spain. J. Hydrol. 2005, 313, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, C.B. Development of the Radiocarbon Program OxCal. Radiocarbon 2001, 43, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Aitken, M.J. An Introduction to Optical Dating. The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence; Oxford University Press: Oxford, UK, 1998; p. 267. [Google Scholar]
- Medialdea, A.; Thomsen, K.J.; Murray, A.S.; Benito, G. Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. Quat. Geochronol. 2014, 22, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Truelsen, J.; Wallinga, J. Zeroing of the OSL signal as a function of grain size: Investigating bleaching and thermal transfer for a young fluvial sample. Geochronometria 2003, 22, e8. [Google Scholar]
- Murray, A.S.; Wintle, A.G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 2000, 32, 57–73. [Google Scholar] [CrossRef]
- Duller, G.A.T. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat. Meas. 2003, 37, 161–165. [Google Scholar] [CrossRef]
- Thomsen, K.J.; Jain, M.; Bøtter-Jensen, L.; Murray, A.S.; Jungner, H. Variation with depth of dose distributions in single grains of quartz extracted from an irradiated concrete block. Radiat. Meas. 2003, 37, 315–321. [Google Scholar] [CrossRef]
- Thomsen, K.J.; Murray, A.S.; Bøtter-Jensen, L.; Kinahan, J. Determination of burial dose in incompletely bleached fluvial samples using single grains of quartz. Radiat. Meas. 2007, 42, 370–379. [Google Scholar] [CrossRef]
- Prescott, J.R.; Hutton, J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiat. Meas. 1994, 23, 497–500. [Google Scholar] [CrossRef]
- Durcan, J.A.; King, G.E.; Duller, G.A.T. DRAC: Dose Rate and Age Calculator for trapped charge dating. Quat. Geochronol. 2015, 28, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Barriendos, M.; Ruiz-Bellet, J.; Tuset, J.; Bueso, J.; Balasch, J.; Pino Gonzalez, D.; Ayala, J. The “Prediflood” database of historical floods in Catalonia (NE Iberian Peninsula) AD 1035–2013, and its potential applications in flood analysis. Hydrol. Earth Syst. Sci. 2014, 18, 4807–4823. [Google Scholar] [CrossRef] [Green Version]
- Brázdil, R.; Kundzewicz, Z.W.; Benito, G. Historical hydrology for studying flood risk in Europe. Hydrol. Sci. J. -J. Des Sci. Hydrol. 2006, 51, 739–764. [Google Scholar] [CrossRef]
- Balbás Cruz, J.A. El libro de la provincial de Castellón; Imprenta y librería de J. Armengot: Castellón, Spain, 1892. [Google Scholar]
- Fogues, F. Las inundaciones de la Ribera. An. Del Cent. De Cult. Valencia. 1931, 4, 232–250. [Google Scholar]
- Fontana, J.M. Historia del clima en el litoral mediterráneo: Reino de Valencia más provincia de Murcia. Unpublished report, Jávea. 1978. [Google Scholar]
- Beltrán Manrique, E. Almanzora. El Mijares. Narración Histórica; Armengot: Castellón, Spain, 1958. [Google Scholar]
- Sánchez-Adell, J.; Olcina, F.; Sánchez-Almela, E. Elenco de Fechas Para la Historia Urbana de Castellón de la Plana; Soc. Castellonense de Cultura: Castellón, Spain, 1993. [Google Scholar]
- Barriendos, M.; Gil-Guirado, S.; Pino, D.; Tuset, J.; Pérez-Morales, A.; Alberola, A.; Costa, J.; Balasch, J.C.; Castelltort, X.; Mazón, J.; et al. Climatic and social factors behind the Spanish Mediterranean flood event chronologies from documentary sources (14th–20th centuries). Glob. Planet. Chang. 2019, 182, 102997. [Google Scholar] [CrossRef]
- Benito, G.; Lang, M.; Barriendos, M.; Llasat, M.C.; Francés, F.; Ouarda, T.; Thorndycraft, V.R.; Enzel, Y.; Bardossy, A.; Coeur, D.; et al. Use of systematic, palaeoflood and historical data for the improvement of flood risk estimation. Review of scientific method. Nat. Hazards 2004, 31, 623–643. [Google Scholar]
- Hydrologic Engineering Center. HEC-RAS, River Analysis System, Hydraulics Version 4.1. Reference Manual, (CPD-69); U.S. Army Corps of Engineers: Davis, CA, USA, 2010; p. 411.
- Limerinos, J.T. Determination of the Manning Coefficient from Measured Bed Roughness in Natural Channels; Geological Survey Water-Supply paper 1898-B; US Geological Survey: Washington, DC, USA, 1970. [Google Scholar]
- Lotsari, E.S.; Calle, M.; Benito, G.; Kukko, A.; Kaartinen, H.; Hyyppä, J.; Hyyppä, H.; Alho, P. Topographical change caused by moderate and small floods in a gravel bed ephemeral river—A depth-averaged morphodynamic simulation approach. Earth Surf. Dyn. 2018, 6, 163–185. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, J.E.; Webb, R.H. Hydraulic modeling for paleoflood analysis. In Flood Geomorphology; Baker, V.R., Kochel, R.C., Patton, P.C., Eds.; John Wiley & Sons: New York, NY, USA, 1988; pp. 393–402. [Google Scholar]
- Lang, M.; Ouarda, T.B.M.J.; Bobée, B. Towards operational guidelines for over-threshold modeling. J. Hydrol. 1999, 225, 103–117. [Google Scholar] [CrossRef]
- Naulet, R.; Lang, M.; Ouarda, T.; Coeur, D.; Bobee, B.; Recking, A.; Moussay, D. Flood frequency analysis on the Ardeche river using French documentary sources from the last two centuries. J. Hydrol. 2005, 313, 58–78. [Google Scholar] [CrossRef]
- Veilleux, A.G.; Cohn, T.A.; Flynn, K.M.; Mason, R.R., Jr.; Hummel, P.R. Estimating Magnitude and Frequency of Floods Using the PeakFQ 7.0 Program (2013-3108); US Geological Survey: Reston, VA, USA, 2014.
- Cohn, T.A.; Lane, W.L.; Baier, W.G. An algorithm for computing moments-based flood quantile estimates when historical flood information is available. Water Resour. Res. 1997, 33, 2089–2096. [Google Scholar] [CrossRef] [Green Version]
- Cohn, T.A.; England, J.F.; Berenbrock, C.E.; Mason, R.R.; Stedinger, J.R.; Lamontagne, J.R. A generalized Grubbs-Beck test statistic for detecting multiple potentially influential low outliers in flood series. Water Resour. Res. 2013, 49, 5047–5058. [Google Scholar] [CrossRef]
- Taylor, R.; Bar-Yosef, O. Radiocarbon Dating; Routledge: New York, NY, USA, 2014. [Google Scholar]
- Galbraith, R.F. Statistics for Fission Track Analysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 2005. [Google Scholar]
- Arnold, L.J.; Roberts, R.G.; Galbraith, R.F.; DeLong, S.B. A revised burial dose estimation procedure for optical dating of youngand modern-age sediments. Quat. Geochronol. 2009, 4, 306–325. [Google Scholar] [CrossRef]
- CEDEX. Mapa de Caudales Máximos. Memoria Técnica; Ministerio de Medioambiente y Medio Rural y Marino: Madrid, Spain, 2011. [Google Scholar]
- Beneyto, C.; Aranda, J.A.; Benito, G.; Francés, F. Metodología basada en generadores meteorológicos para la estimación de avenidas extremas. Ing. Agua 2019, 23, 259–273. [Google Scholar] [CrossRef]
- Mateu, J.F. La Primera Confederación Hidrográfica del Júcar (1934–1942); Valencia, Confederación Hidrográfica del Júcar: Valencia, Spain, 2010. [Google Scholar]
- Gabaldó, O.; Fleitz, J.; Villalba Bergado, F. SAIH Flood warning system and emergency management in the Júcar basin (Spain): The case study of October 2000. In Proceedings of the Mitigation of Climate Induced Natural Hazards (MITCH) Workshop II: Advances in Flood Forecasting, Barcelona, Spain, 10–12 June 2002; Flood Warning and Emergency Management: Barcelona, Spain, 2002; p. 15. [Google Scholar]
- Cavanilles, A.J. Observaciones Sobre la Historia Natural, Geografía del Reyno de Valencia. Imprenta Real. Madrid; Reproducción Facsímil, Ediciones Albatros: Valencia, Spain, 1985; Volume 2, pp. 1795–1797. [Google Scholar]
- López-Gómez, A. Presas y canales de riego en los siglos XVI y XVII. In Hitos Históricos de los Regadíos Españoles; Gil Olcina, A., Morales Gil, A., Eds.; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 1992; pp. 91–142. [Google Scholar]
- Stedinger, J.R.; Cohn, T.A. Flood frequency analysis with historical and paleoflood information. Water Resour. Res. 1986, 22, 785–793. [Google Scholar] [CrossRef]
- Frances, F.; Salas, J.D.; Boes, D.C. Flood frequency-analysis with systematic and historical or paleoflood data-based on the 2-parameter General Extreme-Value models. Water Resour. Res. 1994, 30, 1653–1664. [Google Scholar] [CrossRef]
- Botero, B.A.; Francés, F. Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models. Hydrol. Earth Syst. Sci. 2010, 14, 2617–2628. [Google Scholar] [CrossRef] [Green Version]
- Thorndycraft, V.R.; Barriendos, M.; Benito, G.; Rico, M.; Casas, A. The catastrophic floods of AD 1617 in Catalonia (northeast Spain) and their climatic context. Hydrol. Sci. J. 2006, 51, 899–912. [Google Scholar] [CrossRef] [Green Version]
- Barriendos, M.; Martín-Vide, J. Secular Climatic Oscillations as Indicated by Catastrophic Floods in the Spanish Mediterranean Coastal Area (14th–19th Centuries). Clim. Chang. 1998, 38, 473–491. [Google Scholar]
- Llasat, M.-C.; Barriendos, M.; Barrera, A.; Rigo, T. Floods in Catalonia (NE Spain) since the 14th century. Climatological and meteorological aspects from historical documentary sources and old instrumental records. J. Hydrol. 2005, 313, 32–47. [Google Scholar] [CrossRef]
- Corella, J.P.; Benito, G.; Rodriguez-Lloveras, X.; Brauer, A.; Valero-Garcés, B.L. Annually-resolved lake record of extreme hydro-meteorological events since AD 1347 in NE Iberian Peninsula. Quat. Sci. Rev. 2014, 93, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Corella, J.P.; Valero-Garcés, B.L.; Vicente- Serrano, S.M.; Brauer, A.; Benito, G. Three millennia of heavy rainfalls in Western Mediterranean: Frequency, seasonality and atmospheric drivers. Sci. Rep. 2016, 6, 38206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benito, G.; Macklin, M.G.; Zielhofer, C.; Jones, A.F.; Machado, M.J. Holocene flooding and climate change in the Mediterranean. Catena 2015, 130, 13–33. [Google Scholar] [CrossRef] [Green Version]
- Benito, G.; Macklin, M.G.; Panin, A.; Rossato, S.; Fontana, A.; Jones, A.F.; Machado, M.J.; Matlakhova, E.; Mozzi, P.; Zielhofer, C. Recurring flood distribution patterns related to short-term Holocene climatic variability. Sci. Rep. 2015, 5, 16398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blöschl, G.; Kiss, A.; Viglione, A.; Barriendos, M.; Böhm, O.; Brázdil, R.; Coeur, D.; Demarée, G.; Llasat, M.C.; Macdonald, N.; et al. Current flood-rich period is exceptional compared to the past 500 years in Europe. Nature 2020. in review. [Google Scholar]
- Millán, M.M. Extreme hydrometeorological events and climate change predictions in Europe. J. Hydrol. 2014, 518, 206–224. [Google Scholar] [CrossRef]
- Machado, M.J.; Benito, G.; Barriendos, M.; Rodrigo, F.S. 500 Years of rainfall variability and extreme hydrological events in southeastern Spain drylands. J. Arid Environ. 2011, 75, 1244–1253. [Google Scholar] [CrossRef]
- Barriendos, M.; Llasat, M.C. The case of the ‘Maldá’ anomaly in the Western Mediterranean basin (AD 1760-1800): An example of a strong climatic variability. Clim. Chang. 2003, 61, 191–216. [Google Scholar] [CrossRef]
- Capel Molina, J. Génesis de las inundaciones de Octubre de 1973 en el Sureste de la Península Ibérica. Cuad. Geográficos 1974, 4, 149–166. [Google Scholar]
- Benito, G.; Rico, M.; Sánchez-Moya, Y.; Sopeña, A.; Thorndycraft, V.R.; Barriendos, M. The impact of late Holocene climatic variability and land use change on the flood hydrology of the Guadalentín River, southeast Spain. Glob. Planet. Chang. 2010, 70, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Benito, G.; Machado, M.J. Floods in the Iberian Peninsula. In Changes of Flood Risk in Europe; Kundzewicz, Z.W., Ed.; IAHS Press and CRC Press/Balkema: Wallingford, Oxfordshire, UK, 2012; pp. 372–383. [Google Scholar] [CrossRef]
Profile/#Flood Unit | Sample Material | Lab Code (Field Code) 1 | Age, 14C Years BP | Calibrated Age Range 2, CE 95.4% Probability | Most Likely Age Range, CE |
---|---|---|---|---|---|
B2 #Bsd4 | Charcoal 13C/12C: −24.7‰ | Beta-299037 (B2-4-3) | 130 ± 30 | 1674–1778 (38.0%) 1798–1894 (42.4%) 1905–1942 (14.9%) | 1798–1894 |
MLL #1 | Charcoal δ13C: −30.74 ± 1.1‰ | CNA1416 (ML-5) | 135 ± 30 | 1672–1778 (40.8%) 1799–1892 (39.6%) 1907–1953 (15%) | 1672–1778 |
MLL #12 | Charcoal δ13C: −24.05 ± 0.9‰ | CNA1417 (ML-I-37) | 170 ± 30 | 1660–1700 (18%) 1720–1820 (52%) 1833–1881 (10%) 1915–1953 (20%) | 1720–1820 |
MLL #17 | Charcoal δ13C: −27.5 ± 0.95‰ | CNA1418 (ML1) | 125 ± 30 | 1677–1765 (35%) 1800–1896 (47%) 1902–1953 (17%) | 1800–1896 |
MLR #15D | Charcoal δ13C: −27.4 ± 1.2‰ | CNA1419 (ML3) | 185 ± 30 | 1650–1694 (22%) 1726–1813 (57%) 1853–1867 (1%) 1918–1952 (20%) | 1726–1813 |
AML1 #1 | Charcoal 13C/12C: −22.3‰ | Beta-299038 (AML-T1) | 50 ± 30 | 1694–1728 (21.8%) 1812–1919 (73.6%) | 1694–1728 |
AML1 #2 | Charcoal | Poz-42337 (AML-T2) | 195 ± 30 | 1648–1690 (23.1%) 1728–1810 (52.3%) 1925–… (20.0%) | 1728–1810 |
AML1 #3 | Charcoal 13C/12C: −25.8‰ | Beta-299039 (AML-T3) | 80 ± 30 | 1690–1730 (24.9%) 1810–1926 (70.5%) | 1810–1926 |
AML2 #7 | Charcoal 13C/12C: −25.5‰ | Beta-299040 (AML2-7) | 70 ± 30 | 1690–1730 (24.3%) 1810–1924 (71.1%) | 1810–1924 |
Profile/Flood Unit# | Depth (cm) | Age (Years b. 2013) | Equivalent Dose (Gy) | Dose Rate (Gy/ka) 1 | Age CE/BCE |
---|---|---|---|---|---|
MLL #2 | 3.80 | 0.39 ± 0.03 | 0.45 ± 0.03 | 1.15 ± 0.04 | 1593–1653 |
MLL #8 | 2.80 | 0.45 ± 0.05 | 0.52 ± 0.06 | 1.16 ± 0.04 | 1513–1613 |
MLL #13 | 1.90 | 0.60 ± 0.08 | 0.56 ± 0.07 | 0.93 ± 0.04 | 1333–1493 |
MLL #17 | 1.40 | 1.6 ± 0.1 | 1.9 ± 0.1 | 1.15 ± 0.04 | 313–513 |
MLR #10 | 2.50 | 0.49 ± 0.08 | 0.38 ± 0.06 | 0.78 ± 0.03 | 1443–1603 |
AML1 #1 | 0.70 | 0.47 ± 0.07 | 0.58 ± 0.08 | 1.24 ± 0.04 | 1473–1613 |
B1 #3 | 0.45 | 4.0 ± 0.2 | 4.3 ± 0.1 | 1.07 ± 0.04 | BCE 2187–1787 |
B1 #4 | 0.65 | 4.6 ± 0.2 | 4.2 ± 0.1 | 0.92 ± 0.04 | BCE 2787–2387 |
Annual Exceedence Probability (%) | Average Return Period (years) | Montlleó River | Rambla de la Viuda River | ||||
---|---|---|---|---|---|---|---|
Discharge Syst. + paleo (m3 s−1) | Discharge Systematic (m3 s−1) | Change (%) | Discharge Syst. + paleo (m3 s−1) | Discharge Systematic (m3 s−1) | Change (%) | ||
20 | 5 | 125 | 95 | 32 | 155 | 110 | 41 |
10 | 10 | 215 | 160 | 37 | 480 | 305 | 57 |
4 | 25 | 380 | 270 | 41 | 920 | 710 | 30 |
2 | 50 | 530 | 370 | 44 | 1250 | 1000 | 25 |
1 | 100 | 710 | 460 | 45 | 1570 | 1300 | 21 |
0.2 | 500 | 1240 | 840 | 48 | 2305 | 1975 | 17 |
0.1 | 1000 | 1525 | 1020 | 49 | 2615 | 2250 | 16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benito, G.; Sanchez-Moya, Y.; Medialdea, A.; Barriendos, M.; Calle, M.; Rico, M.; Sopeña, A.; Machado, M.J. Extreme Floods in Small Mediterranean Catchments: Long-Term Response to Climate Variability and Change. Water 2020, 12, 1008. https://doi.org/10.3390/w12041008
Benito G, Sanchez-Moya Y, Medialdea A, Barriendos M, Calle M, Rico M, Sopeña A, Machado MJ. Extreme Floods in Small Mediterranean Catchments: Long-Term Response to Climate Variability and Change. Water. 2020; 12(4):1008. https://doi.org/10.3390/w12041008
Chicago/Turabian StyleBenito, Gerardo, Yolanda Sanchez-Moya, Alicia Medialdea, Mariano Barriendos, Mikel Calle, Mayte Rico, Alfonso Sopeña, and Maria J. Machado. 2020. "Extreme Floods in Small Mediterranean Catchments: Long-Term Response to Climate Variability and Change" Water 12, no. 4: 1008. https://doi.org/10.3390/w12041008