222Rn Concentration in Groundwaters Circulating in Granitoid Massifs of Poland
Abstract
:1. Introduction
2. Research Area
3. Methods of Measurements and Result Calculation
- t–time needed for the decay of 222Rn nuclei to the activity concentration below the lower detection limit of the spectrometer [24 hours],
- –222Rn activity concentration [Bq·L−1],
- LLD–lower detection limit of the spectrometer; 0.05 Bq·L−1,
- –222Rn half-life; the duration of 3.8224 days was adopted.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chau, N.D.; Dulinski, M.; Jodlowski, P.; Nowak, J.; Rozanski, K.; Sleziak, M.; Wachniew, P. Natural radioactivity in groundwater—A review. Isotopes Environ. Health Stud. 2011, 47, 415–437. [Google Scholar] [CrossRef]
- Przylibski, T.A. Radon. Specific Component of Medicinal Waters in the Sudety Mountains; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2005. (In Polish) [Google Scholar]
- Girault, F.; Perrier, F.; Przylibski, T.A. Radon-222 and radium-226 occurrence in water: A review. In Radon, Health and Natural Hazards; Gillmore, G.K., Perrier, F.E., Crockett, R.G.M., Eds.; Geological Society of London: London, UK, 2018; Volume 451, pp. 131–154. [Google Scholar] [CrossRef]
- Collé, R. A precise determination of the 222Rn half-life by 4π − αβ liquid scintillation measurements. Radioact. Radiochem. 1995, 6, 16–29. [Google Scholar]
- Collé, R. Critically evaluated half-life for 222Rn radioactive decay and associated uncertainties. Radioact. Radiochem. 1995, 6, 30–40. [Google Scholar]
- Bellotti, E.; Brogan, C.; Di Carlo, G.; Laubenstein, M.; Menegazzo, R. Precise measurement of the 222Rn half-life: A probe to monitor the stability of radioactivity. Phys. Lett. B 2015, 743, 526–530. [Google Scholar] [CrossRef][Green Version]
- Przylibski, T.A. Size estimation and protection of the areas supplying radon to groundwater intakes. Arch. Environ. Prot. 2000, 26, 55–71. [Google Scholar]
- Ball, T.K.; Cameron, D.G.; Colman, T.B.; Roberts, P.D. Behaviour of radon in the geological environment: A review. Q. J. Eng. Geol. Hydrogeol. 1991, 24, 169–182. [Google Scholar] [CrossRef]
- Appleton, J.D. Radon in air and water. In Essentials of Medical Geology; Selinus, O., Alloway, B., Centeno, J.A., Finkelman, R.B., Fuge, R., Lindh, U., Smedley, P., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 239–277. [Google Scholar]
- Przylibski, T.A. Estimating coefficient of radon emanation from crystalline rocks into groundwater. Appl. Radiat. Isot. 2000, 53, 473–479. [Google Scholar] [CrossRef]
- Przylibski, T.A. Shallow circulation groundwater—The main type of water containing hazardous radon concentration. Nat. Hazards Earth Sys. 2011, 11, 1695–1703. [Google Scholar] [CrossRef]
- Przylibski, T.A. Radon. A radioactive therapeutic element. In Radon, Health and Natural Hazards; Gillmore, G.K., Perrier, F.E., Crockett, R.G.M., Eds.; Geological Society of London: London, UK, 2018; Volume 451, pp. 209–236. [Google Scholar] [CrossRef]
- Council Directive 2013/51/EURATOM of 22 October 2013. Laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption. Off. J. Eur. Union 2013, 7, 56. [Google Scholar]
- Regulation by the Minister of Health of 7 December 2017 on the quality of water intended for human consumption. J. Laws 2017, Item 2294. (In Polish)
- Kochański, J.W. A review of research into medicinal applications of radon-222 in Polish health resorts. Folia Med. Lodz. 2002, 29, 31–68. (In Polish) [Google Scholar]
- Becker, K. One century of radon therapy. Int. J. Low Radiat. 2004, 1, 334–357. [Google Scholar] [CrossRef]
- Falkenbach, A.; Kovacs, J.; Franke, A.; Jӧrgens, K.; Ammer, K. Radon therapy for the treatment of rheumatic diseases—Review and meta-analysis of controlled clinical trials. Rheumatol. Int. 2005, 25, 205–210. [Google Scholar] [CrossRef]
- Erickson, B.E. The therapeutic use of radon: A biomedical treatment in Europe; An “alternative” remedy in the United States. Dose-Response 2007, 5, 48–62. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nagy, K.; Kávási, N.; Kovács, T.; Somlai, J. Radon therapy and speleotherapy in Hungary. Press Th. Clim. 2008, 145, 219–225. [Google Scholar]
- Franke, A.; Franke, T. Long-term benefits of radon spa therapy in rheumatic diseases: Results of the randomized, multi-centre IMuRa trial. Rheumatol. Int. 2013, 33, 2839–2850. [Google Scholar]
- Kapetanović, A.; Hodžić, S.; Avdić, D. The effect of mineral radon water applied in the form of full baths on blood pressure in patients with hypertension. J. Health Sci. 2013, 3, 38–40. [Google Scholar] [CrossRef]
- Law of 9 June 2011: Geological and mining law. J. Law 9 Febr. 2015 2011, Item 196. (In Polish)
- Przylibski, T.A. Radon research in Poland: A review. Solid State Phenom. 2015, 238, 90–115. [Google Scholar] [CrossRef]
- Kryza, R.; Mazur, S.; Oberc-Dziedzic, T. Sudetic geological mosaic: Insight into the root of the Variscan orogeny. Prz. Geol. 2004, 52, 761–773. [Google Scholar]
- Żelaźniewicz, A.; Aleksandrowski, P. Tectonic subdivision of Poland: Southwestern Poland. Prz. Geol. 2008, 56, 904–911, (In Polish with English abstract). [Google Scholar]
- Mazur, S.; Aleksandrowski, P.; Szczepański, J. Outline structure and tectonic evolution of the Variscan Sudetes. Prz. Geol. 2010, 58, 133–145, (In Polish with English abstract). [Google Scholar]
- Bareja, E.; Jęczmyk, M.; Banasiewicz, J.; Lis, J.; Miecznik, J.B.; Ałdan, M. Radioactive elements in the Sudetes. Biul. Inst. Geol. 1982, 341, 259–272. (In Polish) [Google Scholar]
- Borucki, J.; Głowacki, Z.; Masłowski, W.; Sałdan, M.; Uberna, J.; Zajączkowski, W. Assessment of Prospects for Exploration of Uranium Ore Deposits in Poland; Institute of Nuclear Chemistry and Technology: Warszawa, Poland, 1967. (In Polish) [Google Scholar]
- Zdulski, M. Sources for History of Uranium Mining in Poland; Wydawnictwo DiG: Warszawa, Poland, 2000. [Google Scholar]
- Klementowski, R. In the Shadow of Sudetic Uranium. Uranium Mining in Poland in 1948–1973; IPN: Wrocław, Poland, 2010. (In Polish) [Google Scholar]
- Solecki, A.; Śliwiński, W.; Wojciechowska, I.; Tchorz-Trzeciakiewicz, D.; Syryczyński, P.; Sadowska, M.; Makowski, B. Assessment of a possibility of uranium mineralization occurrence in Poland on the basis of results of geological and prospection work. Prz. Geol. 2011, 59, 98–110. (In Polish) [Google Scholar]
- Miecznik, J.B.; Strzelecki, R.; Wołkowicz, S. Uranium in Poland—History of prospecting and chances for finding new deposits. Prz. Geol. 2011, 59, 688–697, (In Polish with English abstract). [Google Scholar]
- Wołkowicz, S. Radon potential of Sudetes and selected units of Fore-Sudetic Block. In Radon Potential of the Sudetes with Determination of Potentially Medicinal Radon Water Areas; Wołkowicz, S., Ed.; Państwowy Instytut Geologiczny: Warszawa, Poland, 2007; pp. 5–106, (In Polish with English summary). [Google Scholar]
- Ciężkowski, W.; Przylibski, T.A. Radon in waters from health resorts of the Sudety Mts. (SW Poland). Appl. Radiat. Isot. 1997, 48, 855–856. [Google Scholar] [CrossRef]
- Przylibski, T.A.; Żebrowski, A. Origin of radon in medicinal waters of Świeradów Zdrój. Nukleonika 1996, 41, 109–115. [Google Scholar]
- Przylibski, T.A.; Żebrowski, A. Origin of radon in medicinal waters of Lądek Zdrój (Sudety Mountains, SW Poland). J. Environ. Radioact. 1999, 46, 121–129. [Google Scholar] [CrossRef]
- Przylibski, T.A. 222Rn concentration changes in medicinal groundwaters of Lądek Zdrój (Sudety Mountains, SW Poland). J. Environ. Radioact. 2000, 48, 327–347. [Google Scholar] [CrossRef]
- Przylibski, T.A.; Mroczkowski, K.; Żebrowski, A.; Filbier, P. Radon-222 in medicinal groundwaters of Szczawno Zdrój (Sudety Mountains, SW Poland). Environ. Geol. 2001, 40, 429–439. [Google Scholar] [CrossRef]
- Przylibski, T.A.; Dorda, J.; Kozłowska, B. The occurrence of 226Ra and 228Ra in groundwaters of the Polish Sudety Mountains. Nukleonika 2002, 47, 5–64. [Google Scholar]
- Przylibski, T.A.; Kozłowska, B.; Dorda, J.; Kiełczawa, B. Radon-222 and 226Ra concentrations in mineralized groundwaters of Gorzanów (Kłodzko Basin, Sudeten Mountains, SW Poland). J. Radioanal. Nucl. Chem. 2002, 253, 11–19. [Google Scholar] [CrossRef]
- Przylibski, T.A.; Mamont-Cieśla, K.; Kusyk, M.; Dorda, J.; Kozłowska, B. Radon concentrations in groundwaters of the Polish part of the Sudety Mountains (SW Poland). J. Environ. Radioact. 2004, 75, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Przylibski, T.A.; Adamczyk-Lorenc, A.; Żak, S. Areas of the occurrence of potentially medicinal radon water in the Sudetes. In Radon Potential of the Sudetes with Determination of Potentially Medicinal Radon Water Areas; Wołkowicz, S., Ed.; Państwowy Instytut Geologiczny: Warszawa, Poland, 2007; pp. 107–167, (In Polish with English summary). [Google Scholar]
- Przylibski, T.A.; Fijałkowska, L.; Bielecka, A. Potentially medicinal radon waters of the Śleża massif. Prz. Geol. 2008, 56, 763–771, (In Polish with English abstract). [Google Scholar]
- Przylibski, T.A.; Gorecka, J.; Kula, A.; Fijałkowska-Lichwa, L.; Zagożdżon, K.; Zagożdżon, P.; Miśta, W.; Nowakowski, R. 222Rn and 226Ra activity concentrations in groundwaters of southern Poland: New data and selected genetic relations. J. Radioanal. Nucl. Chem. 2014, 301, 757–764. [Google Scholar] [CrossRef][Green Version]
- Walencik, A.; Kozłowska, B.; Przylibski, T.A.; Dorda, J.; Zipper, W. Natural radioactivity of groundwater from the Przerzeczyn-Zdrój Spa. Nukleonika 2010, 55, 169–175. [Google Scholar]
- Walencik-Łata, A.; Kozłowska, B.; Dorda, J.; Przylibski, T.A. The detailed analysis of natural radionuclides dissolved in spa waters of the Kłodzko Valley, Sudety Mountains, Poland. Sci. Total Environ. 2016, 569–570, 1174–1189. [Google Scholar] [CrossRef]
- Przylibski, T.A.; Gorecka, J. 222Rn activity concentration differences in groundwaters of three Variscan granitoid massifs in the Sudetes (NE Bohemian Massif, SW Poland). J. Environ. Radioact. 2014, 134, 43–53. [Google Scholar] [CrossRef]
- Znosko, J. Map of tectonic units of Poland. In Tectonic atlas of Poland; Znosko, J., Ed.; Polish Geological Institute: Warsaw, Poland, 1998. [Google Scholar]
- Narkiewicz, M.; Dadlez, R. Geological regional subdivision of Poland-general guidelines and proposed schemes of sub-Cenozoic and sub-Permian units. Prz. Geol. 2008, 56, 391–397, (In Polish with English abstract). [Google Scholar]
- Karnkowski, P.H. Tectonic subdivision of Poland—Polish lowlands. Prz. Geol. 2008, 56, 895–903, (In Polish with English abstract). [Google Scholar]
- Gawęda, A.; Burda, J.; Klötzli, U.; Golonka, J.; Szopa, K. Episodic construction of the Tatra granitoid intrusion (Central Western Carpathians, Poland/Slovakia): Consequences for the geodynamics of the variscan collision and the Rheic Ocean closure. Int. J. Earth Sci. 2016, 105, 1153–1174. [Google Scholar] [CrossRef][Green Version]
- Aleksandrowski, P.; Mazur, S. On the new tectonic solutions in “Geological Atlas of Poland”. Prz. Geol. 2017, 65, 1499–1510, (In Polish with English abstract). [Google Scholar]
- Miliszkiewicz, A. Radon; PWN: Wrocław, Poland, 1978. (In Polish) [Google Scholar]
- Janica, D. Natural Hydrogeochemical Background of the Quaternary Groundwaters of North-Eastern Poland. Ph.D. Thesis, University of Warsaw, Warsaw, Poland, 2002. (In Polish). [Google Scholar]
- Adamczyk-Lorenc, A. Hydrogeochemical Background of Radon in Groundwaters of the Sudetes. Ph.D. Thesis, Wrocław University of Technology, Wrocław, Poland, 2007. (In Polish). [Google Scholar]
- Andrews, J.N.; Giles, I.S.; Kay, R.L.F.; Lee, D.J.; Osmond, J.K.; Cowart, J.B.; Fritz, P.; Barker, J.F.; Gale, J. Radioelements, radiogenic helium and age relationship for groundwaters from the granites at Stripa, Sweden. Geochim. Cosmochim. Acta 1982, 46, 1533–1543. [Google Scholar] [CrossRef]
- Andrews, J.N.; Ford, D.J.; Hussain, N.; Trivedi, D.; Youngman, M.J. Natural radioelement solution by circulating groundwaters in the Stripa granite. Geochim. Cosmochim. Acta 1989, 53, 1791–1802. [Google Scholar] [CrossRef]
- Banks, D.; Royset, O.; Strand, T.; Skarphagen, H. Radioelement (U, Th, Rn) concentrations in Norwegian bedrock groundwaters. Environ. Geol. 1995, 25, 165–180. [Google Scholar] [CrossRef]
- Heinicke, J.; Koch, U.; Hebert, D.; Martinelli, G. Simultaneous measurements of radon and CO2 in water as a possible tool for earthquake prediction. In Gas Geochemistry; Dubois, C., Ed.; Science Reviews: Northwood, UK, 1995; pp. 295–303. [Google Scholar]
- Schubert, G.; Berka, R.; Katzlberger, Ch.; Motschka, K.; Denner, M.; Grath, J.; Philippitsch, R. Radionuclides in groundwater, rock and stream sediments in Austria—Results of a recent survey. In Radon, Health and Natural Hazards; Gillmore, G.K., Perrier, F.E., Crockett, R.G.M., Eds.; Geological Society of London: London, UK, 2018; Volume 451, pp. 83–112. [Google Scholar] [CrossRef]
- Ulbak, K.; Klinder, O. Radium and radon in Danish drinking water. Radiat. Prot. Dosim. 1984, 7, 87–89. [Google Scholar] [CrossRef]
- Gomes, M.E.P.; Neves, L.J.P.; Coelho, F.; Carvalho, A.; Sousa, M.; Pereira, A.J.S.C. Geochemistry of granites and metasediments of the urban area of Vila Real (northern Portugal) and correlative radon risk. Environ. Earth Sci. 2011, 64, 497–502. [Google Scholar] [CrossRef]
- Cho, B.W.; Choo, C.O. Geochemical behavior of uranium and radon in groundwater of jurassic granite area, Icheon, middle Korea. Water 2019, 11, 1278. [Google Scholar] [CrossRef][Green Version]
- Md, N.K.; Vinayachandran, N.; Jose, B.; Vashistha, R. Radon in groundwater in Tumkur District of Karnataka with special reference to sampling sensitivity. J. Geol. Soc. India 2014, 83, 665–668. [Google Scholar] [CrossRef]
- Choubey, V.M.; Bartarya, S.K.; Ramola, R.C. Radon in Himalayan springs: A geohydrological control. Environ. Geol. 2000, 39, 523–530. [Google Scholar] [CrossRef]
- Asare-Donkor, N.K.; Poku, P.A.; Addison, E.C.D.K.; Wemengah, D.D.; Adimado, A.A. Measurement of radon concentration in groundwater in the Ashanti region of Ghana. J. Radioanal. Nucl. Chem. 2018, 317, 675–683. [Google Scholar] [CrossRef]
- Arabi, A.S.; Funtua, I.I.; Dewu, B.B.M.; Kwaya, M.Y.; Kurowska, E.; Hauwau Kulu, S.; Abdulhamid, M.S.; Mahed, G. Geology, lineaments, and sensitivity of groundwater to radon gas contamination. Sustain. Water Resour. Manag. 2018, 4, 643–653. [Google Scholar] [CrossRef]
- Bonotto, D.M. 222Rn, 220Rn and other dissolved gases in mineral waters of southeast Brazil. J. Environ. Radioact. 2014, 132, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Michel, J. Relationship of radium and radon with geological formations. In Radon, Radium and Uranium in Drinking Water; Cothern, C.R., Rebers, P.A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1990; pp. 83–95. [Google Scholar]
Granitoid Massif | Number of Data | Min. | Max. | Arithmetic Mean | Standard Deviation | Median | The Lower | The Upper |
---|---|---|---|---|---|---|---|---|
95% Confidence Limit | ||||||||
(−) | (Bq·L−1) | |||||||
Karkonosze | 203 | 0.3 | 1465 | 217 | 280 | 106 | 76.0 | 137.6 |
Strzegom-Sobótka | 115 | 0.4 | 415.5 | 43.5 | 68.5 | 19.1 | 15.0 | 28.1 |
Strzelin | 69 | 0.5 | 119.4 | 15.7 | 21.8 | 7.9 | 5.4 | 12.5 |
Kłodzko-Złoty Stok | 45 | 1.0 | 287.3 | 57.6 | 57.0 | 36.3 | 20.8 | 65.6 |
Kudowa | 25 | 0.9 | 143.9 | 38.5 | 40.9 | 20.6 | 14.2 | 61.2 |
Tatra | 36 | 0.2 | 104.2 | 18.6 | 23.8 | 9.5 | 2.9 | 16.1 |
Granitoid Massif | Number of Data | Minimum | Maximum | Arithmetic Mean | Standard Deviation | Median |
---|---|---|---|---|---|---|
[-] | [Bq·L−1] | |||||
Karkonosze | 199a | 0.3a | 1391.5a | 212a | 275.1a | 106a |
58b | 0.3b | 1716b | 293b | 367b | 179b | |
Strzegom-Sobótka | 95a | 0.3a | 415.5a | 42.4a | 64.0a | 19.1a |
Strzelin | 55a | 0.5a | 95.1a | 14.2a | 19.1a | 7.9a |
Kłodzko-Złoty Stok | 22b | 1.5b | 228b | 65.5b | 57.0b | 34.5b |
Granitoid massif | Hydrogeochemical background of 222Rn (Bq·L−1) |
---|---|
Karkonosze | 16 ÷ 690 21 ÷ 868a |
Strzegom-Sobótka | 3 ÷ 112 |
Strzelin | 1.4 ÷ 40 |
Kłodzko-Złoty Stok | 10 ÷ 140 6 ÷ 242a |
Kudowa | 3.9 ÷ 109 |
Tatra | 0.7 ÷ 61 |
Granitoid Massif Location | 222Rn activity Concentration [Bq·L−1] | References |
---|---|---|
EUROPE | ||
Sweden | ||
Stripa granite | Max. 102,000 | [56,57] |
Norway | ||
Iddefjord granite | 65–8,500 | [58] |
Germany | ||
Bad Brambach | Max. 25,000 | [59] |
Austria | ||
Bohemian Massif | Max. 793 | [60] |
Variscan meta-granites in the Alps | Max. 120 | [60] |
Denmark | ||
Bornholm | Max. 1070 | [61] |
Portugal | ||
Vila Real (northern Portugal); springs | Max. 938 | [62] |
United Kingdom | ||
Carnmenellis Granite | Max. 740 | [8] |
ASIA | ||
Korea | ||
Korea: Jurassic Granite Area, Icheon, Middle Korea | Max. 865.8 | [63] |
India | ||
Tumkur district | Max. 253 | [64] |
Himalaya Munsiari Fm. and Bhatwari Fm. | Max. 887 | [65] |
AFRICA | ||
Ghana | ||
Aprade-Mesuam | Dug well (mean): 41.26 Borehole (mean): 46.16 | [66] |
Nigeria | ||
Gubrunde | 15.8 ± 0.2 | [67] |
Kundiga | 26.6 ± 0.3 | [67] |
AMERICAS | ||
Brasil | ||
Águas de Lindóia | 22.1 ± 1.1 | [68] |
USA | ||
Maine | Max. 55,000 | [69] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
PRZYLIBSKI, T.A.; DOMIN, E.; GORECKA, J.; KOWALSKA, A. 222Rn Concentration in Groundwaters Circulating in Granitoid Massifs of Poland. Water 2020, 12, 748. https://doi.org/10.3390/w12030748
PRZYLIBSKI TA, DOMIN E, GORECKA J, KOWALSKA A. 222Rn Concentration in Groundwaters Circulating in Granitoid Massifs of Poland. Water. 2020; 12(3):748. https://doi.org/10.3390/w12030748
Chicago/Turabian StylePRZYLIBSKI, Tadeusz A., Elżbieta DOMIN, Joanna GORECKA, and Agata KOWALSKA. 2020. "222Rn Concentration in Groundwaters Circulating in Granitoid Massifs of Poland" Water 12, no. 3: 748. https://doi.org/10.3390/w12030748