# Elements for the Successful Computer Simulation of Sediment Management Strategies for Reservoirs

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Physical Processes Associated with Sediment Management Alternatives

## 3. Equations and Computer Codes for Reservoir Sediment Management

#### 3.1. Summary of Basic Equations

#### 3.1.1. Three-Dimensional

#### 3.1.2. Two-Dimensional

#### 3.1.3. One-Dimensional

#### 3.2. Codes Used for Reservoir Sediment Management Assessment: Capabilities and Limitations

#### 3.2.1. One-Dimensional Models

#### 3.2.2. Two-Dimensional Models

#### 3.2.3. Three-Dimensional Models

## 4. Published Simulations of Reservoir Sediment Management

#### 4.1. Simulation of Longitudinal Sediment Profile in Reservoirs

#### 4.2. Route Sediments to Maintain Transport and Minimize Deposition

#### 4.3. Remove or Redistribute Sediment Deposits

## 5. Discussion

#### 5.1. Model Selection

#### 5.2. Route Sediments (Maintain Transport, Minimize Deposition)

#### 5.2.1. Sediment Bypass Tunnel

#### 5.2.2. Turbidity Current

#### 5.3. Remove or Redistribute Sediment Deposits

#### 5.3.1. Dredging

#### 5.3.2. Flushing

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Notation

A | flow area |

c | volumetric sediment concentration |

${c}_{b}$ | near-bed sediment concentration |

${c}_{be}$ | equilibrium near-bed sediment concentration |

$\overline{c}$ | depth averaged concentration |

$\stackrel{=}{c}$ | cross sectional-averaged concentration |

${\stackrel{=}{c}}_{*}$ | new carrying capacity |

D | deposition rate of sediment onto the bed |

E | entrainment rate of sediment from the bed |

g | gravitational acceleration |

h | water depth |

$p$ | pressure |

${q}_{b}$ | vectorial bed load rate |

${q}_{s}$ | suspended load transport rate |

Q | discharge |

${Q}_{b}$ | bed load transport rate |

${Q}_{s}$ | suspended load transport rate |

${S}_{0}$ | bed slope |

${S}_{f}$ | friction slope |

t | time |

u | flow velocity components in x direction |

$\overline{u}$ | depth-averaged flow velocity components in x direction |

$\stackrel{=}{u}$ | cross sectional-averaged flow velocity components in x direction |

v | flow velocity components in y direction |

$\overline{v}$ | depth-averaged flow velocity components in y direction |

w | flow velocity components in z direction |

${w}_{f}$ | sediment particle fall velocity |

${Z}_{b}$ | bottom elevation |

$\propto $ | dimensionless coefficient that characterizes the rate at which the new carrying capacity is attained |

ρ | density of sediment water mixture |

${\u03f5}_{s}$ | the eddy diffusivity of sediment-particle transport |

$\overline{{\u03f5}_{s}}$ | depth-averaged the eddy diffusivity of sediment-particle transport |

$\eta $ | porosity of bed sediment |

${\tau}_{bi}$ | shear stresses acting on the channel bottom (i = x, y) |

${\tau}_{si}$ | shear stresses acting on the water surface (i = x, y) |

${\upsilon}_{t}$ | eddy viscosity |

## References

- Yannopoulos, P.C.; Demetracopoulos, A.C. A Novel Methodology for Multiple-Year Regulation of Reservoir Active Storage Capacity. Water
**2018**, 10, 1254. [Google Scholar] [CrossRef][Green Version] - Rahman, K.; Gorelick, S.M.; Dennedy-Frank, P.J.; Yoon, J.; Rajaratnam, B. Declining rainfall and regional variability changes in Jordan. Water Res. Res. J.
**2015**, 51, 3828–3835. [Google Scholar] [CrossRef] - Morris, G.L.; Fan, J. Reservoir Sedimentation Handbook; v 1.04; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Beyer Portner, N.; Schleiss, A.J. Erosion des Bassins Versants Alpins par Ruissellement de Surface [Alpine Watershed Erosion by Surface Run-off]; Laboratory of Hydraulic Constructions (LCH), Ecole Polytechnique Fédérale de Lausanne (EPFL): Lausanne, Switzerland, 1998. [Google Scholar]
- Wang, Z.-H.; Hu, C. Strategies for managing reservoir sedimentation. Int. J. Sediment Res.
**2009**, 24, 369–384. [Google Scholar] [CrossRef] - Atkinson, E. The Feasibility of Flushing Sediment from Reservoirs; Report OD-137; HR Wallingford: Wallingford, UK, 1996. [Google Scholar]
- Dams, W.C.O. The Report of the World Commission on Dams; Earthscan Publications Ltd.: London, UK, 2000; p. 356. [Google Scholar]
- Schleiss, A.J.; Franca, M.J.; Juez, C.; Cesare, G.D. Reservoir sedimentation. J. Hydraul. Res.
**2016**, 54, 595–614. [Google Scholar] [CrossRef] - Morris, G.L. Collection and interpretation of reservoir data to support sustainable use. In Proceedings of the 10th FICS and 5th FIHMC, Reno, NV, USA, 19–23 April 2015. [Google Scholar]
- Chen, C.-N.; Tsai, C.-H. Estimating sediment flushing efficiency of a shaft spillway pipe and bed evolution in a reservoir. Water
**2017**, 9, 924. [Google Scholar] [CrossRef][Green Version] - Castillo, L.; Carrillo, J.; Álvarez, M.A. Complementary methods for determining the sedimentation and flushing in a reservoir. J. Hydraul. Eng.
**2015**, 141, 05015001–05015010. [Google Scholar] [CrossRef][Green Version] - Wu, W. Computational River Dynamics; Taylor & Francis: Balkema, Netherlands, 2007. [Google Scholar]
- Yang, C.T. Erosion and Sedimentation Manual; US Department of the Interior Bureau of Reclamation: Denver, CO, USA, 2006.
- United States Society on Dams. Modeling Sediment Movement in Reservoirs; USSD: Denver, CO, USA, 2015. [Google Scholar]
- García, M.H. (Ed.) Sedimentation Engineering: Processes, Measurements, Modeling, and Practice, 1st ed.; American Society of Civil Engineers Manual of Practice 110: Reston, VA, USA, 2008. [Google Scholar]
- Azarang, F.; Bajestan, M.S. Simulating the erosion and sedimentation of Karun Alluvial River in the Region of Ahvaz (southwest of Iran). Am. J. Eng. Res.
**2015**, 4, 233–245. [Google Scholar] - Ahn, J.; Yang, C.T. Numerical Modeling of Reservoir Sedimentation and Flushing Processes. Ph.D Thesis, Colorado State University, Fort Collins, CO, USA, 2011. [Google Scholar]
- Rhone Sediment Observatory Web Page. Available online: http://www.graie.org/osr/ (accessed on 23 December 2019).
- Cheng-Chia Huang, J.-S.L.; Lee, F.-Z.; Tan, Y.-C. Physical model-based investigation of reservoir sedimentation processes. Water
**2018**, 10, 352. [Google Scholar] [CrossRef][Green Version] - Papanicolaou, A.N.; Elhakeem, M.; Krallis, G.; Prakash, S.; Edinger, J. Sediment transport modeling review—current and future developments. J. Hydraul. Eng.
**2008**, 134, 1–14. [Google Scholar] [CrossRef] - Lai, Y. An unstructured grid arbitrarily shaped element method for fluid flow simulation. In Proceedings of the 30th Fluid Dynamics Conference, Kyoto, Japan, 10–14 July 2000. [Google Scholar] [CrossRef]
- Sixta, M.; Greimann, B.; Collins, K. Sedimentation analysis of the Yellowstone river at intake diversion dam, Montana. In Proceedings of the SEDHYD 2015, Reno, NV, USA, 19–23 April 2015; p. 11. [Google Scholar]
- Iber Web Page. Available online: http://www.iberaula.es/ (accessed on 23 December 2019).
- TELEMAC Web Page. Available online: http://www.opentelemac.org/ (accessed on 23 December 2019).
- Basement Web Page. Available online: https://basement.ethz.ch/ (accessed on 23 December 2019).
- Chen, C.-N.; Tsai, C.-H.; Tsai, C.-T. Simulation of sediment yield from watershed by physiographic soil erosion–deposition model. J. Hydrol.
**2006**, 327, 293–303. [Google Scholar] [CrossRef] - Ermilov, A.A.; Baranya, S.; Rüther, N. Numerical Simulation of Sediment Flushing in Reservoirs with TELEMAC; Norwegian University of Science and Technology: Trondheim, Norway, 2018. [Google Scholar]
- Delf 3D Web Page. Available online: https://oss.deltares.nl/web/delft3d (accessed on 23 December 2019).
- Mike 3 Web Page. Available online: https://www.mikepoweredbydhi.com/ (accessed on 23 December 2019).
- Annandale, G.W.; Morris, G.L.; Karki, P. Extending the Life of Reservoirs: Sustainable Sediment Management for Dams and Run-of-River Hydropower; World Bank Group: Washington, DC, USA, 2016; p. 193. [Google Scholar]
- Gibson, S.; Pridal, D. Negotiating hydrologic uncertainty in long term reservoir sediment models: Simulating argandab reservoir deposition with HEC-RAS. In Proceedings of the SEDHYD 2015, Reno, NV, USA, 19–23 April 2015. [Google Scholar]
- Amini, A.; Heller, P.; Cesare, G.D.; Schleiss, A. Comprehensive numerical simulations of sediment transport and flushing of a Peruvian reservoir. In Proceedings of the River Flow 2014, Special Session on Reservoir Sedimentation, Iowa City, LA, USA, 11–14 July 2014; pp. 211–219. [Google Scholar]
- Mohammad, M.E.; Al-Ansari, N.; Issa, I.E.; Knutsson, S. Sediment in Mosul Dam reservoir using the HEC-RAS model. J. Lakes Reserv.
**2016**, 21, 235–244. [Google Scholar] [CrossRef][Green Version] - Castillo, L.G.; Carrillo, J.M.; Álvarez, M.A. Simulation of the Flushing into the Dam-reservoir Paute-Cardenillo; Taylor & Francis Group: London, UK, 2014; pp. 203–210. ISBN 978-1-138-02675-9. [Google Scholar]
- Gibson, S.; Boyd, P. Modeling long term alternatives for sustainable sediment management using operational sediment transport rules. Reserv. Sediment. J.
**2014**, 229–236. [Google Scholar] [CrossRef] - Nohani, E.; Afrous, A. Predicting sedimentation process in dam reservoir using mathematical model. J. Sci. Res. Dev.
**2015**, 2, 285–290. [Google Scholar] - Launay, M.; Dugué, V.; Faure, J.-B.; Coquery, M.; Camenen, B.; Coz, J.L. Numerical modelling of the suspended particulate matter dynamics in a regulated river network. Sci. Total Environ.
**2019**, 665, 591–605. [Google Scholar] [CrossRef] - Omer, A.Y.A.; Ali, Y.S.A.; Roelvink, J.A.; Dastgheib, A.; Paron, P.; Crosato, A. Modelling of sedimentation processes inside Roseires Reservoir (Sudan). Earth Surf. Dyn. J.
**2015**, 3, 223–238. [Google Scholar] [CrossRef][Green Version] - Kondolf, G.M.; Gao, Y.; Annandale, G.; Morris, G.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth Future J.
**2014**, 2, 1–26. [Google Scholar] [CrossRef] - Mohammadnezhad, B.A.; Mohammadian, M.; Mohammadian, V. Numerical modeling of sedimentation in the Sefid-Rood Reservoir, Iran. River Flow J.
**2010**, 2010, 1131–1138. [Google Scholar] - An, S.; Julien, P.Y. Three-dimensional modeling of turbid density currents in Imha Reservoir, South Korea. J. Hydraul. Eng.
**2014**, 140, 05014001–05014015. [Google Scholar] [CrossRef][Green Version] - Georgoulas, A.; Angelidis, P.; Kopasakis, K.; Kotsovinos, N. 3D multiphase numerical modelling for turbidity current flows. Numer. Model.
**2012**. [Google Scholar] [CrossRef] - Huang, C.C.; Lin, W.C.; Ho, H.C.; Tan, Y.C. Estimation of Reservoir Sediment Flux through Bottom Outlet with Combination of Numerical and Empirical Methods. Water
**2019**, 11, 1353. [Google Scholar] [CrossRef][Green Version] - Lai, Y.G.; Wu, K.-W. A numerical modeling study of sediment bypass tunnels at Shihmen Reservoir, Taiwan. Int. J. Hydrol.
**2018**, 2, 72–81. [Google Scholar] [CrossRef] - Gibson, S.; Boyd, P. Monitoring, measuring, and modeling a reservoir flush on the Niobrara River in the Sandhills of Nebraska. River Flow
**2016**, 448–1455. [Google Scholar] [CrossRef][Green Version] - Tagavifar, A.; Adib, A. Evaluation of sedimentation and flushing by mathematical model in reservoirs of the successive Dez stream dams in Iran. J. Food Agric. Environ.
**2010**, 8, 980–987. [Google Scholar] - Shooshtari, M.M.; Adib, A.; Ranginkaman, M. Evaluation of variation of useful storage of reservoir in stream dams by GSTARS3 software. Afr. J. Agric. Res.
**2010**, 5, 60–69. [Google Scholar] - Castellet, E.B.; Juny, M.; Bofill, M.A.; Ripollés, J.D. Computational modeling of fine sediment relocation within a dam reservoir by means of artificial flood generation in a reservoir cascade. Water Resour. Res.
**2019**, 55, 15. [Google Scholar] [CrossRef] - Scheuerlein, H.; Tritthart, M.; Nunez-Gonzalez, F. Numerical and physical modelling concerning the removal of sediment deposits from reservoirs. Hydraul. Dam River Struct. J.
**2004**, 329–341. [Google Scholar] [CrossRef] - Rodriguez, M.; Dehesa, J.; Villarreal, F. Feasibility study of sediment flushing from a Mexican reservoir location in the valley of Mexico basin; by using numerical models in 2D and 3D. In Proceedings of the 37th IAHR World Congress, Kuala Lumpur, Malaysia, 13–18 August 2017; p. 10. [Google Scholar]

**Figure 1.**Classification of methods to manage reservoir sedimentation, Reproduced with permission from [9].

Sediment Management Technique | Sediment Management Category and Dominant Physical Processes to be Simulated by Computer Codes |
---|---|

Route Sediments | |

Sediment bypass tunnel | Sediment distribution in water column, wear on tunnel perimeter, sediment transport in supercritical flow, splitting sediments at intake |

Sediment pass-through | |

Drawdown and sluicing | Sediment suspension, multiple grain size sediment transport |

Turbidity current | Hyper-concentrated flow, sediment entrainment and deposition, plume momentum, diffusion |

Hydrosuction Sediment Removal System (HSRS) | Sediment entrainment, slurry transport in pipes, sufficient head difference |

Remove Deposits | |

Flushing | Sediment entrainment, multiple grain size sediment transport, bank stability |

Pressure flushing | Incipient motion, cohesive sediment transport |

Hydraulic dredging | Sediment cohesion, slurry transport in pipes |

HSRS | Sediment entrainment, slurry transport in pipes, incipient motion |

Dimensionality | 1-D | 2-D | 3-D | |||
---|---|---|---|---|---|---|

Process | Simulation of longitudinal sediment profile in reservoirs | |||||

Gibson and Pridal [31] | HEC-RAS | Omer et al. [38] | Delft3D | |||

Amini et al. [32] | HEC-RAS | |||||

Mohammad et al. [33] | HEC-RAS | |||||

Castillo et al. [34] | HEC-RAS | |||||

Nohani and Afrous [36] | GSTARS3 | |||||

Launay et al. [37] | RS3Rhône 1-D | |||||

Process | Route Sediments (maintain transport, minimize deposition) | |||||

Turbidity current | Huang et al. [43] | SRH-2D | Mohammadnezhad et al. [40] | Mike 3 | ||

An and Julien [41] | FLOW-3D | |||||

Georgoulas et al. [42] | Fluent | |||||

Bypass Tunnel | Lai and Wu [44] | SRH-2D | ||||

Sixta et al. [22] | SRH-2D | |||||

Process | Remove or Redistribute Sediment Deposits | |||||

Flushing | Gibson and Boyd [45] | HEC-RAS | Castellet et al. [48] | Iber | Scheuerlein et al. [49] Rodriguez et al. [50] | SSIIM FLOW-3D |

Tagavifar and Adib [46] | GSTARS3 | Chen and Tsai [10] | PSED | |||

Shooshtari et al. [47] | GSTARS4 | Amini et al. [32] | BASEMENT 2D | |||

Ahn and Yang [17] | GSTARS.3 | Ermilov et al. [27] | TELEMAC | |||

Dredging | USSD, 2015 | HEC-RAS |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Anari, R.; Hotchkiss, R.H.; Langendoen, E.J. Elements for the Successful Computer Simulation of Sediment Management Strategies for Reservoirs. *Water* **2020**, *12*, 714.
https://doi.org/10.3390/w12030714

**AMA Style**

Anari R, Hotchkiss RH, Langendoen EJ. Elements for the Successful Computer Simulation of Sediment Management Strategies for Reservoirs. *Water*. 2020; 12(3):714.
https://doi.org/10.3390/w12030714

**Chicago/Turabian Style**

Anari, Razieh, Rollin H. Hotchkiss, and Eddy J. Langendoen. 2020. "Elements for the Successful Computer Simulation of Sediment Management Strategies for Reservoirs" *Water* 12, no. 3: 714.
https://doi.org/10.3390/w12030714