Soil Temperature Dynamics at Hillslope Scale—Field Observation and Machine Learning-Based Approach
Abstract
:1. Introduction
- How does soil temperature vary between north and south aspect hillslopes of the Lesser Himalayan region, and how do different rainfall characteristics (intensities and durations) affect the soil temperature dynamics?
- How well do XGBoost, SVM, RF, and MLP perform to estimate soil temperature in the data-scarce region?
- How does the selection of input variables (soil moisture, rainfall, air temperature, relative humidity, solar radiation, and vapor pressure deficit) effect model efficiency?
2. Materials and Methods
2.1. Site Descriptions
2.2. Hydrological Measurements
2.3. Training and Testing of the Model
- Meteorological parameters (C1)
- Meteorological parameters + rainfall (C2)
- Meteorological parameters + soil moisture (C3)
- Meteorological parameters + rainfall + soil moisture (C4)
2.4. Soil Temperature Estimation Algorithms
2.4.1. Multilayer Perceptron (MLP)
2.4.2. Random Forest (RF)
2.4.3. Support Vector Machine (SVM)
2.4.4. Extreme Gradient Boosting (XGBoost)
3. Results
3.1. Hillslope-Scale Soil Temperature and Moisture Variability
3.2. Influence of Rainfall on Soil Temperature
3.3. Estimation of Soil Temperature at Half-Hourly and Hourly Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Algorithms | MLP (No. of Neurons) | RF | SVM | XGBoost | ||||
---|---|---|---|---|---|---|---|---|
Parameters | 1st Hidden Layer | 2nd Hidden Layer | Nest | Dmax | Epsilon | Dmax | Max Delta | Min W |
Hourly | ||||||||
C1 | 3 | 51 | 57 | 9 | 1 | 6 | 13 | 0 |
C2 | 5 | 10 | 17 | 10 | 1 | 6 | 12 | 5 |
C3 | 5 | 14 | 8 | 19 | 1 | 15 | 16 | 6 |
C4 | 6 | 28 | 39 | 17 | 1 | 14 | 16 | 4 |
Half-Hourly | ||||||||
C1 | 3 | 43 | 17 | 11 | 1 | 6 | 9 | 12 |
C2 | 5 | 41 | 16 | 9 | 1 | 6 | 9 | 10 |
C3 | 5 | 56 | 18 | 16 | 1 | 15 | 10 | 4 |
C4 | 6 | 85 | 13 | 17 | 1 | 19 | 0 | 4 |
Algorithms | MLP | RF | SVM | XGBoost | ||||
---|---|---|---|---|---|---|---|---|
Parameters | 1st Hidden Layer | 2nd Hidden Layer | Nest | Dmax | Epsilon | Dmax | Max Delta | Min W |
Hourly | ||||||||
C1 | 3 | 5 | 19 | 8 | 0 | 4 | 11 | 1 |
C2 | 4 | 6 | 17 | 11 | 1 | 4 | 10 | 2 |
C3 | 2 | 8 | 15 | 18 | 1 | 12 | 11 | 2 |
C4 | 2 | 5 | 14 | 17 | 0 | 11 | 11 | 2 |
Half-Hourly | ||||||||
C1 | 2 | 8 | 17 | 10 | 2 | 9 | 5 | 1 |
C2 | 3 | 9 | 16 | 10 | 2 | 9 | 5 | 1 |
C3 | 5 | 5 | 19 | 16 | 2 | 16 | 9 | 3 |
C4 | 6 | 7 | 14 | 19 | 2 | 18 | 18 | 4 |
References
- Feng, Y.; Cui, N.; Hao, W.; Gao, L.; Gong, D. Estimation of soil temperature from meteorological data using different machine learning models. Geoderma 2019, 338, 67–77. [Google Scholar] [CrossRef]
- Hu, G.; Zhao, L.; Wu, X.; Li, R.; Wu, T.; Xie, C.; Qiao, Y.; Shi, J.; Cheng, G. An analytical model for estimating soil temperature profiles on the Qinghai-Tibet Plateau of China. J. Arid Land 2016, 8, 232–240. [Google Scholar] [CrossRef]
- Kunkel, V.; Wells, T.; Hancock, G.R. Soil temperature dynamics at the catchment scale. Geoderma 2016, 273, 32–44. [Google Scholar] [CrossRef]
- Wundram, D.; Pape, R.; Löffler, J. Alpine soil temperature variability at multiple scales. Arct. Antarct. Alp. Res. 2010, 42, 117–128. [Google Scholar] [CrossRef]
- Singh, S.K.; Pandey, C.B.; Sidhu, G.S.; Sarkar, D.; Sagar, R. Concentration and stock of carbon in the soils affected by land uses and climates in the western Himalaya, India. Catena 2011, 87, 78–89. [Google Scholar] [CrossRef]
- Blöschl, G.; Bierkens, M.F.P.; Chambel, A.; Cudennec, C.; Destouni, G.; Fiori, A.; Kirchner, J.W.; McDonnell, J.J.; Savenije, H.H.G.; Sivapalan, M.; et al. Twenty-three unsolved problems in hydrology (UPH)–a community perspective. Hydrol. Sci. J. 2019, 64, 1141–1158. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Zhang, X.; Cosh, M.H. Modeling soil temperature in a temperate region: A comparison between empirical and physically based methods in SWAT. Ecol. Eng. 2019, 129, 134–143. [Google Scholar] [CrossRef]
- Martinez, C.; Hancock, G.R.; Wells, T.; Kalma, J.D. An assessment of the variability of soil temperature at the catchment scale. In MODSIM 2007 International Congress on Modeling and Simulation; Modeling & Simulation Society of Australia and New Zealand: Christchurch, New Zealand, 2007; pp. 2319–2325. [Google Scholar]
- Liang, L.L.; Riveros-Iregui, D.A.; Emanuel, R.E.; McGlynn, B.L. A simple framework to estimate distributed soil temperature from discrete air temperature measurements in data-scarce regions. J. Geophys. Res. Atmos. 2014, 119, 407–417. [Google Scholar] [CrossRef]
- Coleman, K.; Jenkinson, D.S.; Crocker, G.J.; Grace, P.R.; Klír, J.; Körschens, M.; Poulton, P.R.; Richter, D.D. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 1997, 81, 29–44. [Google Scholar] [CrossRef]
- Wells, T.; Hancock, G.R.; Dever, C.; Martinez, C. Application of RothPC-1 to soil carbon profiles in cracking soils under minimal till cultivation. Geoderma 2013, 207, 144–153. [Google Scholar] [CrossRef]
- Ni, J.; Cheng, Y.; Wang, Q.; Ng, C.W.W.; Garg, A. Effects of vegetation on soil temperature and water content: Field monitoring and numerical modelling. J. Hydrol. 2019, 571, 494–502. [Google Scholar] [CrossRef]
- Musie, M.; Sen, S.; Chaubey, I. Hydrologic Responses to Climate Variability and Human Activities in Lake Ziway Basin, Ethiopia. Water 2020, 12, 164. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Li, L.; Gong, J.; Ren, C.; Liu, J.; Chen, H. Daily soil temperatures predictions for various climates in United States using data-driven model. Energy 2018, 160, 430–440. [Google Scholar] [CrossRef]
- Mihalakakou, G. On estimating soil surface temperature profiles. Energy Build. 2002, 34, 251–259. [Google Scholar] [CrossRef]
- George, R.K. Prediction of soil temperature by using artificial neural networks algorithms. Nonlinear Anal. Theory Methods Appl. 2001, 47, 1737–1748. [Google Scholar] [CrossRef]
- Bilgili, M. Prediction of soil temperature using regression and artificial neural network models. Meteorol. Atmos. Phys. 2010, 110, 59–70. [Google Scholar] [CrossRef]
- Zare Abyaneh, H.; Bayat Varkeshi, M.; Golmohammadi, G.; Mohammadi, K. Soil temperature estimation using an artificial neural network and co-active neuro-fuzzy inference system in two different climates. Arab. J. Geosci. 2016, 9, 377. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Behmanesh, J.; Khalili, K. Evaluating the performance of artificial intelligence methods for estimation of monthly mean soil temperature without using meteorological data. Environ. Earth Sci. 2017, 76, 325. [Google Scholar] [CrossRef]
- Tabari, H.; Sabziparvar, A.-A.; Ahmadi, M. Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region. Meteorol. Atmos. Phys. 2011, 110, 135–142. [Google Scholar] [CrossRef]
- Kim, S.; Singh, V.P. Modeling daily soil temperature using data-driven models and spatial distribution. Theor. Appl. Climatol. 2014, 118, 465–479. [Google Scholar] [CrossRef]
- Kisi, O.; Sanikhani, H.; Cobaner, M. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques. Theor. Appl. Climatol. 2017, 129, 833–848. [Google Scholar] [CrossRef]
- Raghavendra, S.; Deka, P.C. Support vector machine applications in the field of hydrology: A review. Appl. Soft Comput. J. 2014, 19, 372–386. [Google Scholar] [CrossRef]
- Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 2010, 25, 891–909. [Google Scholar] [CrossRef]
- Tyralis, H.; Papacharalampous, G.; Langousis, A. A brief review of random forests for water scientists and practitioners and their recent history in water resources. Water 2019, 11, 910. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yang, Q.; Shao, J.; Wang, G. Dynamic streamflow simulation via online gradient-boosted regression tree. J. Hydrol. Eng. 2019, 24, 04019041. [Google Scholar] [CrossRef]
- Kumar, V.; Sen, S. Evaluation of spring discharge dynamics using recession curve analysis: A case study in data-scarce region, Lesser Himalayas. Sustain. Water Resour. Manag. 2017, 4, 539–557. [Google Scholar] [CrossRef]
- Nanda, A.; Sen, S.; Jirwan, V.; Sharma, A.; Kumar, V. Understanding plot-scale hydrology of Lesser Himalayan watershed—A field study and HYDRUS-2D modelling approach. Hydrol. Process. 2018, 32, 1254–1266. [Google Scholar] [CrossRef]
- Nanda, A.; Sen, S.; McNamara, J.P. How spatiotemporal variation of soil moisture can explain hydrological connectivity of infiltration-excess dominated hillslope: Observations from lesser Himalayan landscape. J. Hydrol. 2019, 579, 124146. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning The Elements of Statistical LearningData Mining, Inference, and Prediction, 2nd ed.; Springer: Berlin, Germany, 2009; ISBN 978-0-387-84858-7. [Google Scholar]
- Laxmi, R.R.; Kumar, A. Weather based forecasting model for crops yield using neural network approach. Stat. Appl. 2011, 9, 55–69. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- Gill, M.K.; Asefa, T.; Kemblowski, M.W.; McKee, M. Soil moisture prediction using support vector machines. J. Am. Water Resour. Assoc. 2006, 42, 1033–1046. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995; ISBN 978-1-4419-3160-3. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 3–17 August 2013; Volume 16, pp. 785–794. [Google Scholar]
- Chen, T.; He, T. xgboost: eXtreme Gradient Boosting. R Packag. version 0.4-2. 2015, Volume 1–4. Available online: http://cran.fhcrc.org/web/packages/xgboost/vignettes/xgboost.pdf (accessed on 30 December 2019).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), Savannah, GA, USA, 22 August 2016. [Google Scholar]
- Wickham, H. Ggplot2; Springer: New York, NY, USA, 2009. [Google Scholar]
- Wen, Z.; Niu, F.; Yu, Q.; Wang, D.; Feng, W.; Zheng, J. The role of rainfall in the thermal-moisture dynamics of the active layer at Beiluhe of Qinghai-Tibetan plateau. Environ. Earth Sci. 2014, 71, 1195–1204. [Google Scholar] [CrossRef]
- Fan, J.; Wang, X.; Wu, L.; Zhou, H.; Zhang, F.; Yu, X.; Lu, X.; Xiang, Y. Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Convers. Manag. 2018, 164, 102–111. [Google Scholar] [CrossRef]
- Han, Y.; Wu, J.; Zhai, B.; Pan, Y.; Huang, G.; Wu, L.; Zeng, W. Coupling a Bat Algorithm with XGBoost to Estimate Reference Evapotranspiration in the Arid and Semiarid Regions of China. Adv. Meteorol. 2019, 2019, 1–16. [Google Scholar] [CrossRef]
- Gauch, M.; Mai, J.; Shervan Gharari, J.L. Data-driven vs. physically-based streamflow prediction models. In Proceedings of the 9th International Workshop on Climate Informatics, Paris, France, 2–4 October 2019. [Google Scholar]
Date | Maximum 5-min Rainfall Intensity (mm/h) | Average Event Rainfall Intensity (mm/h) | Duration (h) | Drop in Soil Temperature (°C) | % Change in Soil Moisture |
---|---|---|---|---|---|
26 June 2017 | 58.08 | 10.78 | 5.92 | 3.326 | 54.49 |
28 June 2017 | 15.00 | 5.869 | 3.75 | 0.63 | 27.84 |
29 June 2017 | 39.60 | 6.124 | 7.08 | 1.328 | 20.39 |
3 July 2017 | 30.60 | 5.85 | 2.75 | 0.77 | 20.42 |
6 July 2017 | 82.32 | 21.45 | 1.50 | 1.56 | 36.72 |
12 July 2017 | 85.32 | 10.61 | 4.75 | 0.85 | 29.81 |
28 July 2017 | 24.00 | 4.6 | 5.08 | 1.29 | 29.04 |
29 July 2017 | 12.00 | 3.05 | 9.25 | 2.23 | 18.81 |
5 August 2017 | 19.20 | 5.15 | 2.83 | 0.64 | 27.04 |
9 August 2017 | 36.00 | 4.26 | 5.00 | 0.908 | 22.54 |
25 August 2017 | 24.00 | 4.05 | 2.42 | 0.16 | 0.30 |
28 August 2017 | 21.60 | 3.75 | 5.50 | 1.50 | 36.90 |
31 August 2017 | 36.00 | 6.33 | 8.83 | 2.61 | 24.80 |
1 September 2017 | 9.60 | 3.85 | 4.00 | 0.13 | 13.46 |
2 September 2017 | 14.40 | 2.02 | 10.67 | 0.88 | 10.40 |
23 September 2017 | 28.80 | 3.69 | 18.58 | 2.704 | 57.78 |
11 September 2017 | 24.00 | 3.67 | 13.17 | 3.25 | 70.05 |
12 February 2018 | 4.80 | 1.54 | 2.58 | 0.66 | 0.35 |
13 February 2018 | 24.00 | 7.71 | 1.17 | 3.10 | 40.36 |
4 March 2018 | 31.20 | 8.67 | 2.58 | 2.45 | 43.15 |
Date | Maximum 5-min Rainfall Intensity (mm/h) | Average Event Rainfall Intensity (mm/h) | Duration (h) | Drop in Soil Temperature (°C) | % Change in Soil Moisture |
---|---|---|---|---|---|
26 June 2017 | 94.44 | 13.50 | 6.33 | 3.92 | 80.11 |
28 June 2017 | 24.36 | 7.36 | 3.83 | 0.62 | 23.92 |
29 June 2017 | 27.36 | 6.06 | 7.17 | 1.15 | 19.33 |
03 July 2017 | 33.60 | 6.13 | 2.50 | 0.65 | 14.70 |
06 July 2017 | 45.72 | 15.83 | 1.17 | 0.87 | 28.19 |
10 July 2017 | 103.50 | 21.02 | 6.25 | 4.26 | 42.78 |
12 July 2017 | 79.20 | 12.38 | 4.17 | 0.81 | 35.92 |
28 July 2017 | 14.40 | 3.77 | 5.08 | 0.93 | 25.65 |
29 July 2017 | 16.80 | 3.28 | 9.25 | 1.99 | 18.05 |
5 August 2017 | 19.20 | 2.82 | 2.75 | 0.27 | 21.85 |
9 August 2017 | 33.60 | 5.57 | 4.92 | 0.91 | 26.11 |
25 August 2017 | 7.20 | 3.28 | 2.25 | 0.24 | 14.64 |
28 August 2017 | 50.40 | 5.02 | 6.17 | 1.198 | 25.58 |
31 August 2017 | 38.40 | 6.68 | 8.83 | 1.99 | 31.47 |
1 September 2017 | 7.20 | 3.22 | 5.33 | 0.22 | 16.53 |
2 September 2017 | 7.20 | 1.95 | 10.83 | 0.82 | 13.08 |
23 September 2017 | 28.80 | 3.68 | 18.50 | 1.62 | 57.36 |
11 December2017 | 24.00 | 4.25 | 12.08 | 1.32 | 60.56 |
12 February 2018 | 4.80 | 1.60 | 2.58 | 0.439 | 0.39 |
13 February 2018 | 21.60 | 2.93 | 4.08 | 1.97 | 33.52 |
4 March 2018 | 38.40 | 9.67 | 2.58 | 2.88 | 43.21 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nanda, A.; Sen, S.; Sharma, A.N.; Sudheer, K.P. Soil Temperature Dynamics at Hillslope Scale—Field Observation and Machine Learning-Based Approach. Water 2020, 12, 713. https://doi.org/10.3390/w12030713
Nanda A, Sen S, Sharma AN, Sudheer KP. Soil Temperature Dynamics at Hillslope Scale—Field Observation and Machine Learning-Based Approach. Water. 2020; 12(3):713. https://doi.org/10.3390/w12030713
Chicago/Turabian StyleNanda, Aliva, Sumit Sen, Awshesh Nath Sharma, and K. P. Sudheer. 2020. "Soil Temperature Dynamics at Hillslope Scale—Field Observation and Machine Learning-Based Approach" Water 12, no. 3: 713. https://doi.org/10.3390/w12030713
APA StyleNanda, A., Sen, S., Sharma, A. N., & Sudheer, K. P. (2020). Soil Temperature Dynamics at Hillslope Scale—Field Observation and Machine Learning-Based Approach. Water, 12(3), 713. https://doi.org/10.3390/w12030713