# Parametric Terracing as Optimization of Controlled Slope Intervention

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Terrace Planning and Construction

#### 1.2. Research Questions

^{2}) and consequently planting the largest number of grapevines. Digging provokes marl-softening processes. Such processes consequently lead to the following changes: thicker disintegrated clay layers on the slopes, increased water permeability of the surface layer, and the possibility of water penetrating deeper into the cracked flysch base. For these reasons it is important to follow the line of the stable configuration of the old terrain during planning and construction. The following research questions remained: Could we create (or choose) an even better version of terracing? Could the area utilization be greater? How can we be sure that the variation chosen is optimal, and how can we make the selection more objective? Is it possible to choose a new method and technology, and to achieve better results in all these aspects?

#### 1.3. New Design Techniques in Architectural Practice

#### 1.4. Hypothesis

## 2. Materials and Methods

_{t,i}is the area of i terrace platforms, and A is the total area of the plot. Results closer to 1 are considered better.

## 3. Results

## 4. Discussion

^{2}) or the number of vines, but also in terms of ease of construction, cost, and the simplest agricultural working method.

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Posthumus, H.; Stroosnijder, L. To terrace or not: The short-term impact of bench terraces on soil properties and crop response in the Peruvian Andes. Environ. Dev. Sustain.
**2010**, 12, 263–276. [Google Scholar] [CrossRef] - Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene
**2014**, 6, 10–25. [Google Scholar] [CrossRef] - Tarolli, P.; Sofia, G.; Calligaro, S.; Prosdocimi, M.; Preti, F.; Dalla Fontana, G. Vineyards in Terraced Landscapes: New Opportunities from Lidar Data. Land Degrad. Dev.
**2014**, 26, 92–102. [Google Scholar] [CrossRef] - Ažman Momirski, L. Terasirana pokrajina. In Terasirana pokrajina Goriških brd; Perko, D., Kladnik, D., Eds.; Založba ZRC: Ljubljana, Slovenia, 2008; pp. 98–118. [Google Scholar]
- Lasanta, T.; Arnáez, J.; Oserín, M.; Ortigosa, L. Marginal Lands and Erosion in Terraced Fields in the Mediterranean Mountains. Mt Res. Dev.
**2001**, 21, 69–76. [Google Scholar] [CrossRef] - Höchtl, F.; Ruşdea, E.; Schaich, H.; Wattendorf, P.; Bieling, C.; Reeg, T.; Konold, W. Building bridges, crossing borders: Integrative approaches to rural landscape management in Europe. Nor. Geografisk Tidsskr.-Norw. J. Geogr.
**2007**, 61, 157–169. [Google Scholar] [CrossRef] - Eisenhower, M.S. (Ed.) Yearbook of Agriculture 1931. United States Department of Agriculture, 1931. Available online: https://archive.org/details/yoa1931/page/n1/mode/2up (accessed on 27 January 2020).
- Bertovič, M.; Andlar, G. The Grey Istria Cultural Landscape–The Analysis of Town of Oprtalj Terraced Landscape. Ann. Istrian Mediterr. Stud. (ANNALES Series Historia et Sociologia)
**2019**, 29, 101–124. [Google Scholar] [CrossRef] - Tavares, T.d.O.; de Oliveira, B.R.; Silva, V.d.A.; Pereira da Silva, R.; dos Santos, A.F.; Okida, E.S. The times, movements and operational efficiency of mechanized coffee harvesting in sloped areas. PLoS ONE
**2019**, 14. Available online: https://doi.org/10.1371/journal.pone.0217286 (accessed on 27 January 2020). [CrossRef] [PubMed] - Varotto, M.; Bonardi, L.; Tarolli, P. (Eds.) World Terraced Landscapes: History, Environment, Quality of Life; Springer: Cham, Switzerland, 2019; pp. 1–356. [Google Scholar]
- Štefunková, D.; Hanušin, J. Viticultural landscapes: Localised transformations over the past 150 years through an analysis of three case studies in Slovakia. Moravian Geog. Rep.
**2019**, 27, 155–168. [Google Scholar] [CrossRef] [Green Version] - Lieskovský, J.; Kenderessy, P.; Špulerová, J.; Lieskovský, T.; Koleda, P.; Kienast, F.; Gimmi, U. Factors Affecting the Persistence of Traditional Agricultural Landscapes in Slovakia during the Collectivization of Agriculture. Landscape Ecol.
**2014**, 29, 867–877. [Google Scholar] - Škvarč, A.; Kodrič, I. Nature and regulation: Management of vineyards and orchards on terraces. Urbani izziv
**2006**, 17, 78–84. [Google Scholar] [CrossRef] - Ažman Momirski, L. Kulturne terase v severnih Goriških brdih na primeru katastrske občine in naselja Kožbana. In Terasirana pokrajina Goriških brd; Perko, D., Kladnik, D., Eds.; Založba ZRC: Ljubljana, Slovenia, 2008; pp. 139–155. [Google Scholar]
- Pijl, A.; Barneveld, P.; Mauri, L.; Borsato, E.; Grigolato, S.; Tarolli, P. Impact of mechanisation on soil loss in terraced vineyard landscapes. Geog. Res. Lett.
**2019**, 45, 287–308. [Google Scholar] [CrossRef] [Green Version] - Ramos, M.C.; Cots-Folch, R.; Martínez-Casasnovas, J.A. Sustainability of modern land terracing for vineyard plantation in a mediterranean mountain environment–The case of the Priorat Region (NE Spain). Geomorphology
**2007**, 86, 1–11. [Google Scholar] [CrossRef] - Ramos, M.C.; Benito, C.; Martínez-Casasnovas, J.A. Simulating soil conservation measures to control soil and nutrient losses in a small, vineyard dominated, basin. Agric. Ecosyst. Environ.
**2015**, 213, 194–208. [Google Scholar] [CrossRef] - Alpter. Available online: http://predmet.fa.uni-lj.si/alpter/terraced-landscapes.html (accessed on 19 December 2019).
- Scaramellini, G.; Varotto, M. (Eds.) Terraced Landscapes of the Alps: Atlante, (Progetto Alpter); Marsilio: Venezia, Italy, 2008; Available online: https://www.alpter.net/IMG/pdf/ALPTER_Atlas_ENG_small.pdf (accessed on 23 February 2020).
- Ažman Momirski, L. Kulturne terase v južnih Goriških brdih na primeru katastrske občine in naselja Medana. In Terasirana pokrajina Goriških brd; Perko, D., Kladnik, D., Eds.; Založba ZRC: Ljubljana, Slovenia, 2008; pp. 119–138. [Google Scholar]
- Škvarč, A. Renewal of the Vineyard. Knowledge as a Determining Factor in Agricultural Development; KGZNG: Dobrovo, Slovenia, 1999. [Google Scholar]
- Ažman Momirski, L.; Kladnik, D.; Komac, B.; Petek, F.; Repolusk, P.; Zorn, M. Terraced Landscapes of the Gorizia Hills; Založba ZRC: Ljubljana, Slovenia, 2008; pp. 1–197. [Google Scholar]
- Ažman Momirski, L.; Škvarč, A.; Kodrič, I. The terraces of Goriška Brda—Case study of Medana. In Paesaggi Terrazzati Dell’arco Alpino; Fontanari, E., Patassini, D., Eds.; Marsilio: Venice, Italy, 2008; pp. 40–46. [Google Scholar]
- Zeiger, M. Meet the Geodesigner. ARCHITECT: The Magazine of the American Institute of Architects. 2010. Available online: https://www.architectmagazine.com/technology/gis-and-data-enriched-design_o (accessed on 17 December 2019).
- Moore, J. GIS for Architecture. Research Guides, WU Libraries. 2013. Available online: http://libguides.wustl.edu/gisforarchitecture (accessed on 1 May 2017).
- Ažman Momirski, L.; Berčič, B.; Škvarč, A.; Kodrič, I. Guidelines for the Arrangement of Permanent Planting on Terraces: The Case of Vineyard Renewal in the Goriška; University of Ljubljana, Faculty of Architecture: Ljubljana, Slovenia, 2007. [Google Scholar]
- Majes, B.; Petkovšek, A.; Klopčič, J. Geotechnical Treatment of the Vineyard Renewal on the Flysch Slope—A model Example for "Medana"; University of Ljubljana, Faculty for Civil and Geodetic Engineering: Ljubljana, Slovenia, 2006. [Google Scholar]
- Rupp, S.; Wohlers, A.; Damm, B. Long-term relationship between landslide occurrences and precipitation in southern Lower Saxony and northern Hesse. J. Geomorphol.
**2018**, 61, 327–338. [Google Scholar] [CrossRef] - Petkovšek, A.; Klopčič, J.; Majes, B. Terraced landscapes and their influence on the slope stability. In Living Terraced Landscapes: Perspectives and Strategies to Revitalise the Abandoned Regions; Ažman Momirski, L., Černič Mali, B., Eds.; University of Ljubljana: Ljubljana, Slovenia, 2008. [Google Scholar]
- Schumacher, P. Parametricism: A new global style for architecture and urban design. Archit. Des.
**2009**, 79, 14–23. [Google Scholar] [CrossRef]

**Figure 1.**Terraced landscapes built and maintained by hand. (

**a**) Building a dry stone wall in Vrtovin, Slovenia, in 2019 (photo by Lucija Ažman Momirski). (

**b**) Terraced vineyards and old traditional terraces in Vrtovin, Slovenia, in 2019 (photo by Lucija Ažman Momirski). (

**c**) Old agricultural terraces in the Koper Hills, Slovenia (photo by Lucija Ažman Momirski). (

**d**) Old garden terraces in the Karst area, Slovenia (photo by Lucija Ažman Momirski). (

**e**) Old agricultural terraces in Brkini, Slovenia (photo by Matevž Lenarčič). (

**f**) Old agricultural terraces in Krkavče, Koper Hills, Slovenia (photo by Lucija Ažman Momirski).

**Figure 2.**Terraced landscapes built and maintained by agricultural machinery. (

**a**) Building new terraces in 2006 in Medana, Gorizia Hills, Slovenia (photo by Lucija Ažman Momirski). (

**b**) Newly planted vineyard in 2006 in Medana, Gorizia Hills, Slovenia (photo by Lucija Ažman Momirski). (

**c**) Traditional terraced landscapes in the Gorizia Hills, renewed every thirty years (photo by Lucija Ažman Momirski). (

**d**) Bizeljsko area, Slovenia, terraced in the 1960s and 1970s (photo by Matevž Lenarčič). (

**e**) Jeruzalem area, Slovenia, terraced in the 1960s and 1970s (photo by Matevž Lenarčič). (

**f**) Jeruzalem area, Slovenia, terraced in the 1960s and 1970s (photo by Lucija Ažman Momirski).

**Figure 3.**Section of single-row terraces, double-row terraces, and multi-row terraces for a vineyard.

**Figure 4.**Plot survey and terraced plot models: plan (top) and 3D view (bottom). (

**a**) Geodetic measurement of the plot with contour lines. (

**b**) Model of the terraced slope with straight terraces. (

**c**) Model of the terraced slope with curved terraces. (

**d**) Model of the final construction plan, which was a combination of the model with straight terraces and curved terraces.

**Figure 5.**Illustration of the algorithm in Grasshopper that allows the combinatorial simulation of 3D terrace slope models by changing selected parameters. The individual components of the algorithm are: 1: surface parameter; 2: measure the length of a list; 3: world XY plane; 4: unit vector on {z} axis; 5: flip a matrix-like data tree; 6: perform mass addition; 7: divide surface; 8: create an interpolated curve on a surface; 9: rotate an object around a center point and an axis vector; 10: merge data streams; 11: create a surface between two curves; 12: compute Euclidean distance between two point coordinates; 13: Boolean (true/false) toggle; 14: evaluates a curve at a specific location; 15: solve intersection event for a line and a plane; 16: pick a single item from a data tree; 17: create a line segment defined by a start point, tangent, and length; 18: create an interpolated curve through a set of points; 19: create a line between two points; 20: represents a collection of 3D point coordinates; 21: represents a collection of 3D point coordinates; 22: solve intersection events for a curve and a plane; 23: solve area properties; 24: deconstruct a plane into its component parts; 25: project an object onto a plane; 26: offset all items in a list; 27: sort a list of numeric keys; 28: planes are defined by an origin point and three-axis vectors; 29: create a plane from a line and a point; 30: the setting of individual numeric values; 31: retrieve a specific item from a list; 32: subtraction command; and 33: text panel.

**Figure 6.**Terraced plot models generated in Grasshopper with selected parameters: plan (figure top) and 3D view (figure bottom). (

**a**) Model of the terraced slope with 57 single-row terraces with terrace platforms 230 cm wide. (

**b**) Model of the terraced slope with 37 double-row terraces with terrace platforms 360 cm wide. (

**c**) Model of the terraced slope with 26 multi-row terraces with terrace platforms 500 cm wide. (

**d**) Model of the terraced slope with 21 multi-row terraces with terrace platforms 620 cm wide.

**Table 1.**Results of the combinatory parametric simulation of the terraced slope of the pilot area in Medana, Goriška Brda, Slovenia.

Terrace Type | Platform Width (m) | Platform and Slope Width (m) | Slope Inclination (°) | Number of Terraces | Slope Plan Area (m^{2}) | Platform Plan Area (m^{2}) | Minimum Height of Slopes (m) | Maximum Height of Slopes (m) | Usage Index (Tx) |
---|---|---|---|---|---|---|---|---|---|

Single-row | 2.3 | 2.3 | 90 | 72 | 0.00 | 6472 | 0.33 | 0.66 | 0.98 |

2.3 | 2.7 | 66 | 63 | 876 | 5600 | 0.45 | 0.84 | 0.84 | |

2.3 | 3 | 45 | 57 | 1347 | 5118 | 0.60 | 1.34 | 0.77 | |

2.7 | 2.7 | 90 | 61 | 0 | 6466 | 0.39 | 0.74 | 0.98 | |

2.7 | 3.2 | 66 | 53 | 877 | 5595 | 0.53 | 0.96 | 0.84 | |

2.7 | 3.5 | 45 | 49 | 1342 | 5094 | 0.70 | 1.33 | 0.77 | |

Double-row | 3 | 3 | 90 | 55 | 0 | 6447 | 0.44 | 0.81 | 0.97 |

3 | 3.6 | 66 | 47 | 872 | 5558 | 0.60 | 1.06 | 0.84 | |

3 | 3.9 | 45 | 44 | 1339 | 5076 | 0.78 | 1.48 | 0.77 | |

3.6 | 3.6 | 90 | 46 | 0 | 6421 | 0.52 | 0.95 | 0.97 | |

3.6 | 4.2 | 66 | 40 | 868 | 5525 | 0.70 | 1.22 | 0.83 | |

3.6 | 4.6 | 45 | 37 | 1342 | 5068 | 0.91 | 1.67 | 0.76 | |

Multi-row | 5 | 5 | 90 | 33 | 0 | 6364 | 0.72 | 1.24 | 0.96 |

5 | 5.9 | 66 | 29 | 870 | 5490 | 0.99 | 1.82 | 0.83 | |

5 | 6.4 | 45 | 26 | 1332 | 5001 | 1.27 | 2.20 | 0.75 | |

6.2 | 6.2 | 90 | 27 | 0 | 6321 | 0.87 | 1.50 | 0.95 | |

6.2 | 7.4 | 66 | 23 | 867 | 5436 | 1.24 | 2.18 | 0.82 | |

6.2 | 8.1 | 45 | 21 | 1341 | 4983 | 1.61 | 2.78 | 0.75 |

**Table 2.**List of parameters of the variants on the pilot terraced slope in Medana, Gorizia Hills, Slovenia in 2006. V1: The version with straight terraces, where the plot was not fully utilized. V2: The alternative with curved terraces, where the terraces are better adapted to the terrain. V3: The version is a combination of straight and curved terraces adapted to the slope and shape of the terrain.

Version | Number of Terraces | Number of Double-Row Terraces | Number of Multi-Row Terraces | Terrace Platform Plan Area (m^{2}) | Terrace Slope Plan Area (m^{2}) | Total Slope Area (m^{2}) | Usage Index (Tx) |
---|---|---|---|---|---|---|---|

V1 | 16 | 7 | 9 | 4978 | 1278 | 6632 | 0.75 |

V2 | 17 | 10 | 7 | 4638 | 1506 | 6632 | 0.70 |

V3 | 18 | 7 | 10 | 4863 | 1678 | 6632 | 0.73 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Berčič, T.; Ažman-Momirski, L.
Parametric Terracing as Optimization of Controlled Slope Intervention. *Water* **2020**, *12*, 634.
https://doi.org/10.3390/w12030634

**AMA Style**

Berčič T, Ažman-Momirski L.
Parametric Terracing as Optimization of Controlled Slope Intervention. *Water*. 2020; 12(3):634.
https://doi.org/10.3390/w12030634

**Chicago/Turabian Style**

Berčič, Tomaž, and Lucija Ažman-Momirski.
2020. "Parametric Terracing as Optimization of Controlled Slope Intervention" *Water* 12, no. 3: 634.
https://doi.org/10.3390/w12030634